APPENDIX 6-B Previous Investigations Summary Information

CURRENT CONDITIONS /RELEASE ASSESSMENT EAST HELENA FACILITY

Prepared for:

ASARCO Incorporated P.O. Box 1230 East Helena, MT 59635

Prepared by:

Hydrometrics, Inc. 2727 Airport Road Helena, MT 59601

September 1998

Revised January 1999

3. EXISTING DATA SUMMARY

This section describes the types of data which are available, areas of the Plant to which the data apply, the purpose for which the data were collected, quality assurance/quality control standards under which the data were collected, and whether the gathering and analysis of these data met applicable quality assurance and quality control and other applicable gathering and analysis procedures.

3.1 DATA SOURCES

The data sources inventory in Appendix 3-1-1 lists the sources of existing data and includes related documents which might be used to define, in whole or in part, the nature and extent of any hazardous waste or hazardous constituent releases, if any, at, or migrating from, the Plant. This Appendix also describes the available data, publication dates, data location, level of data validation (see Section 3.3 for data validation level descriptions), document retention time and confidentiality status. For completeness, the data sources inventory also contains a listing of all available reports and documents relating to the collection and interpretation of the data such as work plans, quality assurance plans, sampling plans, validation reports, construction reports, construction documents (plans and specifications), project reports and EPA responses. A complete database of water sample results is in Appendix 3-1-2. Soil sample results are in Appendix 3-1-3. Exhibit 3-2-1 shows the location of historical monitoring sites within the study area.

3.2 DATA DESCRIPTION

Because large portions of the data were collected in specific regard to work plans and sampling plans (which often included more than one operable unit or subunit), the discussion in this section is necessarily work plan/sampling plan specific instead of operable unit or subunit specific. For example, the Phase I Hydrogeologic Investigation of the Asarco East Helena Facility Water Resources Monitoring Plan (Asarco and Hydrometrics, 1984) resulted in the sampling of groundwater (an operable unit), Lower Lake (a component of the Process

Ponds Subunit), Surface Water (part of the Surface Water/Surface Soils Operable Unit) and subsurface soils. Specific segments of a specific study, for example, Lower Lake sampling in the Phase I hydrogeologic study, can be referenced to a specified subunit by referring to Figure 1-1-2. The discussion in this section is also chronological.

The following are the major categories of data addressed in subsequent sub-sections.

- RI/FS and Post RI/FS Biannual (twice yearly) Sampling Data (Section 3.2.1)
- Post RI/FS Plant Site Soils and Ore Storage Area Data (Section 3.2.2)
- Post RI/FS Process Fluid Circuit Data (Section 3.2.3)
- Post RI/FS Surface Water and Associated Soils Data (Section 3.2.4)
- Post RI/FS Groundwater Well Construction Data (Section 3.2.5)
- General Storm Water Discharge Data (Section 3.2.6)

3.2.1 RI/FS Data and Post RI/FS Biannual Sampling Data

The RI/FS and Post RI/FS Biannual Sampling data were collected and analyzed according to the following plans:

- 1. Phase I (1984 through 1985) Hydrogeological Investigation of the Asarco East Helena Facility Water Resources Monitoring Plan (Asarco and Hydrometrics, 1984). This phase consisted of sampling of the following:
 - Soils samples collected during the drilling of monitoring wells
 - Plant process fluids (Lower Lake)
 - Surface Water (Prickly Pear Creek, Wilson Ditch and Upper Lake)
 - Groundwater (Plant site and private wells)
- 2. Phase II (fall 1986-spring of 1987) Water Resources Investigation, Asarco East Helena Plant, Phase II Remedial Investigation Work Plan (Hydrometrics, 1986). Phase II expanded on the Phase I work plan by adding the following:

- Sampling of East Helena municipal wells
- Synoptic run sampling of Prickly Pear Creek
- Investigation of precipitation water movement through the slag pile
- Determination of arsenic (III) and arsenic (V) concentrations in groundwater and surface water
- Determination of iron (II) and iron (III) concentrations in groundwater and surface water
- 3. Comprehensive Remedial Investigation/Feasibility Study Plan (Hydrometrics, 1987); Comprehensive RI/FS (fall 1987 through fall 1989). For the Comprehensive RI/FS, the Phase II sampling plan was expanded to include:
 - Air sampling (not addressed in this report)
 - Ore storage area sampling
 - Organic contamination evaluation of plant surface soils and certain plant site and municipal wells
 - East Helena soil core drill holes
 - Wilson Ditch sediment core sampling
 - Process ponds sediment sampling
 - Storm water runoff sampling
- 4. The Post Comprehensive RI/FS biannual sampling (spring 1989 to present) continued the monitoring of the following:
 - Plant site wells
 - East Helena municipal wells
 - Designated private wells
 - Plant Process Fluids
 - Prickly Pear Creek

Table 3-2-1 is a historical summary of the water, soil and slag samples <u>collected</u> during major facility investigations. Table 3-2-2 is a listing of the corresponding parameter schedules.

These schedules are general lists of parameters that were analyzed for each site; however, some sampling events may exclude parameters that are listed or include non-listed parameters. The quality of these data is discussed in Section 3.3.

3.2.2 Post RI/FS Plant Site Soils and Ore Storage Area Data

Post RI/FS collection of soils data was conducted primarily in association with construction activities or source area remediation. Data collection associated with these remedial activities is described in Section 3.2.3. Any additional post RI/FS site characterization sampling of surface soils, stockpiles, slag and subsurface soils is described below.

Plant Site surface soils and ores storage areas include the following data:

- Surface Soils
- Stockpiles
- Slag

3.2.2.1 Surface Soils (1990 to Present)

Post RI/FS soils data were collected in the Acid Plant Sediment Drying Area and in the area between Upper and Lower Lakes as part of continued investigations in these areas. Surface and subsurface soil sampling was conducted at test pit, soil boring and monitoring well locations. These soils data are described with subsurface soils in Section 3.2.2.2.

[Note: Following discussion of soils data moved to subsurface soils section.]

In November of 1990, soil samples were taken at eight test pit sites (LLB-1 through LLB-8) in the area between Upper and Lower Lake in order to characterize the soils. Each site was sampled at the following intervals: 0-1 ft., 2-3 ft., 3-5 ft., and 9-10 ft. Samples were analyzed for Toxic Characteristic Leaching Procedure (TCLP) and total arsenic metals. These data

TABLE 3-2-1. HISTORICAL SUMMARY OF THE WATER, SOIL AND SLAG SAMPLING PROGRAM

			Phase I			Phase II	•	AND OLA	omp RI/FS		Pos	st RI Moni	toring
		19	984 to 19	85	Fall 1986 -		ummer 1987		to Fall/Wint				Winter 1997
Site Code	Site Description	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)
Plant Site Mo	onitoring Wells												
APSD-1	Shallow - Plant Site										SA 1991-97; P 1994-96	29	F
APSD-2	Shallow - Plant Site										SA 1991-97; P 1994-96	29	F
APSD-3	Shallow - Plant Site										SA 1991-97;	29	F
APSD-4	Shallow - Plant Site										P 1994-96 SA 1991-97;	29	F
											P 1994-96 SA 1993-97;		
APSD-7	Shallow - Plant Site										P 1994-96 SA 1993-97;	52	F
APSD-8	Shallow - Plant Site										P 1994-96	55	F
APSD-9	Shallow - Plant Site										SA 1993-97; P 1994-96	24	F
APSD-10	Shallow - Plant Site										SA 1993-97; P 1994-96	24	F
APSD-11	Shallow - Plant Site										SA 1993-97; P 1994-96	24	F
APSD-12	Shallow - Plant Site										SA 1993-97;	24	F
APSD-13	Shallow - Plant Site										P 1994-96 SA 1993-97;	24	F
											P 1994-96 SA 1993-94;		
APSD-14	Shallow - Plant Site	0.4005	_	1.500			5.05			_	P 1994	5	F
DH-1 DH-2	Shallow - Upgradient Shallow - Upgradient	S 1985 S 1985	4	A, B & C A, B & C	SA SA	2	D&E D&E	SA SA	3	E E	SA SA	18 18	F F
DH-3	Shallow - Upgradient	S 1985	4	A, B & C	SA	2	D&E	SA	3	E	SA	19	F
DH-4	Shallow - Upgradient	S 1985	4	A & C	SA	2	D&E	SA	3	E	SA 1989-97;	55	F
DH-5	Shallow - Plant Site	S 1985	4	B&C	SA	2	D&E	SA	3	E	P 1994-96 SA 1989-97;	43	 F
	Shallow - Plant Site		4	A, B & C		2	D&E	SA	3	E	P 1994-96	18	F
DH-6 DH-7	Shallow - Plant Site	S 1985 S 1985	4	A, B & C	SA SA	2	D&E	SA	3	E	SA SA	18	F
DH-8	Shallow - Plant Site	S 1985	4	A, B & C	SA	2	D&E	SA	3	E	SA	18	
DH-9	Shallow - Plant Site	S 1985	4	B&C	SA	2	D&E	SA	2	Е	SA	12	F
DH-10	Shallow - Plant Site	S 1985	4	A, B & C	SA	2	D&E	SA	3	Е	SA	14	F
DH-10A	Shallow - Plant Site										11/95	1	F
DH-11	Shallow - Plant Site	S 1985	5	A, B & C	SA	2	D&E	SA	3	Е	SA	18	F
DH-12	Shallow - Plant Site				S	4	E	11/87	2	E	SA	13	F
DH-13	Shallow - Plant Site				S	4	E	SA	3	E	SA SA 1989-97;	18	F
DH-14	Inter Plant Site				S	4	Е	SA	2	Е	P 1994-96	41	F
DH-15	Inter Plant Site				S	6	E	SA	2	E	SA OA - Haraday	0	F
DH-16 DH-17	Shallow Upgradient Shallow Upgradient				S dry S	0	E E	SA dry SA 1988	0	E E	SA often dry SA	3 16	F F
DH-18	Deep - Plant Site				S	4	E	SA 1988	3	E	SA	18	' F
DH-19	Shallow - Plant Site				S 1987	2	Е	SA	3	Е	SA	18	F
DH-20	Shallow - Plant Site				S 1987	3	E	SA	4	Е	SA 1989-97;	33	F
DH-21	Shallow - Plant Site				S 1987	3	E	SA	3	E	P 1994-96 SA	18	F
DH-22	Shallow - Plant Site				S 1987	2	Е	SA	3	E	SA	18	F
DH-23	Shallow - Plant Site				S 1987	2	E	SA	3	E	SA	18	F
DH-24	Shallow - Plant Site				S 1987	2	E	SA	3	Е	SA	18	F
DH-26	Shallow - Plant Site		igwdap		S 1987	2	E	SA	3	E	4/89	1	F
DH-27	Shallow - Plant Site				S 1987	2	E	SA	3	E	SA	20	F
DH-28	Shallow - Plant Site		\vdash					SA	3	E	SA SA 1989-97;	20	F
DH-29	Shallow - Plant Site	im as 181 - 11						SA	3	Е	P 1994-96	33	F
EH-50	Groundwater Monitor Shallow - Downgradient	ing wells			S	5	E	SA	3	Е	SA	18	F
EH-51	Shallow - Downgradient				S	4	E	SA	4	E	SA	18	F
EH-52	Shallow - Downgradient				S	5	E	SA	4	E	SA	18	F
EH-53	Shallow - Downgradient				S	4	Е	SA	3	Е	SA	18	F
EH-54	Shallow - Downgradient				S	4	E	SA	4	Е	SA	18	F
EH-57A	Shallow - Downgradient							SA	3	Е	SA	18	F
EH-58	Shallow - Downgradient				S	4	E	SA	3	Е	SA	18	F
EH-59	Shallow - Downgradient				S	3	E	SA	2	E	SA	15	F
EH-60	Shallow - Downgradient							SA	3	E	SA	18	F

TABLE 3-2-1. HISTORICAL SUMMARY OF THE WATER, SOIL AND SLAG SAMPLING PROGRAM

	-		Phase I	JIVIIVIAI (Phase II		AND GLA	omp RI/FS		I KOOKAII	st RI Moni	toring
		10	984 to 19		Fall 1086 -		ummer 1987		to Fall/Win				Winter 1997
		18	964 10 19	100	Fall 1900 -	Spring/Si	ummer 1967	Fall 1907	to Fall/Win	1900	Spring 19	og to Fail	winter 1997
Site Code	Site Description	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)
East Helena	Groundwater Monitor	ing Wells (0	Cont.)									_	
EH-61	Shallow - Downgradient							SA	3	Е	SA	18	F
EH-62	Shallow - Downgradient							SA	3	E	SA	18	F
EH-100	Deep - Downgradient				S	4	Е	SA	2	E			
EH-101	Inter Downgradient				S	6	Е	SA	2	Е			
EH-102	Inter Downgradient				S	5	Е	SA	3	Е	SA	18	F
Private Grou	ndwater Monitoring V	Vells											
AMCHEM1	Deep - Downgradient							SA	2	E			
AMCHEM2	Deep - Downgradient	SA	3	A & B	SA	2	D&E	SA	2	E	SA	18	F
AMCHEM3	Deep - Downgradient	SA	2	A & B				4/88	1	E			
AMCHEM4	Deep - Downgradient				SA	2	D&E	12/88	1	E	SA	18	F
ASRWELL	Deep - Plant site				S 1987	3	D						
BERRY	Inter Downgradient	5/85	1	А	SA	2	D	4/88	1	E			
BRNHAM1	Inter Downgradient	SA	3	B&C									
CASEY	Inter Downgradient										5/89	1	F
COX	Well Info. Not Available							4/88	1	E			
DHULST	Inter Downgradient	SA	3	B & C	S	4	Е	SA	2	Е	SA	18	F
DUEL	Inter Downgradient	SA	3	A & B	SA	2	D	SA	2	Е	SA	16	F
EHC1	Deep - Downgradient				S	4	D&E	4/88	1	Е			
EHC2	Deep - Downgradient				S	3	D&E	4/88	1	E			
ERNST	Inter Downgradient	5/85	1	Α	SA	2	D	SA	2	E			
FLAGE	Inter Downgradient	5/85	1	A				4/88	1	E			
HELFERT	Inter Downgradient	SA	3	A & B	SA	2	D&E	SA	2	E			
HOFF	Inter Downgradient	3/83, 10/83, 5/85	3	Α	SA	2	D & E						
JENSEN A1	Inter Downgradient	10/83	1	А									
JENSEN A2	Inter Downgradient	5/85	1	С	SA	2	D&E	SA	2	Е			
KAMRMN	Inter Downgradient				2/87	1	D&E						
KHULST	Inter Downgradient				S	2	Е	7/88	1	Е			
LAMPC	Inter Downgradient	SA	4	B & C									
LAMPF1	Inter Downgradient	SA	2	A & B									
LAMPR	Inter Downgradient	SA 1985	2	А	SA	2	D	4/88	1	Е			
LHULST	Inter Downgradient				S	2	Е	SA	2	E	SA	18	F
MANION	Inter Downgradient	SA	5	A & C	SA	2	D						
MCD1	Inter Downgradient	SA	3	A & B									
NORDSTR	Inter Downgradient	5/85	1	А	SA	2	D						
ROMASKO	Inter Downgradient	5/85	1	Α	SA	2	D	SA	2	E			
SIMAC	Inter Downgradient				SA 1987	2	Е	SA	2	Е			
STCLAIR	Shallow - Downgradient				4/87	1	D	SA	2	E	SA often dry	9	F
VETSCH	Inter Downgradient	5/85	1	Α	SA	2	D&E	SA	2	Е			
WALTER	Inter Downgradient				2/87	1	E	SA	3	Е	SA 1989-90	3	F
WESTON	Inter Downgradient	5/85	1	А	SA	2	D	SA	2	E			
WOJCIK	Inter Downgradient	5/85	1	А	SA	2	D	SA	2	E			
Plant Proces	s Fluids												
AP-1	Acid Plant Treatment Facility							Р	6	E			
AP-2	Acid Plant Treatment Facility				P 1987	2	D	Р	4	Е			
AP-3	Acid Plant Treatment Facility							P	4	E			
APTF	Acid Plant Treatment Facility							•	 		P 4/93	1	F
AS\W\SUMP1	Acid Plant Demolition								-		5/98	1	See Table 3-2-8
AS\W\SUMP1	Acid Plant Demolition										5/98	2	See Table 3-2-8
AS\W\SUMP3	Acid Plant Demolition										5/98	3	See Table 3-2-8
EHSE	Sewage Out							8/88		E	3/30	J	OCC 1 ADIC 3-2-0
EHSI	Sewage In							8/88		E			
LH-13	Lower Lake							0,00			4/92	1	See Table 3-2-5
LH-13	Lower Lake										4/92	1	See Table 3-2-5
LH-18	Lower Lake										4/92	1	See Table 3-2-5
LH-52	Lower Lake								 		4/92	1	See Table 3-2-5
L1102	LOWGI LUNG										7102		555 Table 0-2-0

TABLE 3-2-1. HISTORICAL SUMMARY OF THE WATER, SOIL AND SLAG SAMPLING PROGRAM

			Phase I			Phase II			omp RI/FS		Pos	st RI Mon	itoring
-		19	984 to 19		Fall 1986 -		ummer 1987		to Fall/Win	ter 1988			Winter 1997
Site Code	Site Description	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)
Plant Proces	s Fluids (Cont.)												
LH-48	Lower Lake										4/92	1	See Table 3-2-5
LL-1	Composite of Lower Lake -				P 5/87	1	Е	FALL 1987	4	Е			
LL-2	1a, 1b & 1c Lower Lake - 2				P 5/87	2	E	FALL 1987	4	E			
LL-1D	Lower Lake Deep				F 5/67	2		FALL 1907	4		P 1994-96	27	F
LL-1S	Lower Lake Surface										P 1994-96	40	F
LOWER LAKE	Lower Lake	P 1984-85	4	Α	S	3	D&E				SA 1994-97	18	F
S-1	Sump (Ore Storage Area)				Р	2	Е	Р	5	Е			
S-2	Sump (South Plant Drain)				Р	2	Е	Р	5	Е			
S-3	Sump (Ore Storage Area)							Р	5	Е			
SHOWER	SHOWER							P 8/88	1	Е			
SP-1	Speiss Pond				Р	2	E	Р	4	Е			
SP-2	Speiss Pond				5/87	1	Е						
SP-3	Speiss Pond										SA 1991-97	0/Dry	
SP-4	Speiss Pond										SA 1991-97	0/Dry	
SP-5	Speiss Pond						_	_			SA 1991-97	0/Dry	
ST-1	Sinter Plant				5/87	1	E	Р	5	E			
ST-2 TRWASH	Sinter Plant				D E/07	1	E	Р	5	Е		1	
TT-1	Truch Wash Drain Thornock Lake	P 1984-85	4	A	P 5/87 P 7/87	1	E	P	5	E			
WASHER	Washing Machine Drain	F 1904-03	4	A	F 7/07	'		P 8/88	1	E			
ZP-1	Zinc Plant Drain							FALL 1987	4	E			
Surface Wate								17122 1007		-			
PPC-3	Prickly Pear Creek	P 1984-85	8	A & B	S	5	D				SA 1989-97;	69	F
-	Prickly Pear Creek (Sample	. 100100	_			Ů					P 1994-96		
PPC-3A	Site Change)						_				SA 1996-97	5	F
PPC-4	Prickly Pear Creek	P 1984-85	8	A & B	S	3	D				P 1995-96 SA 1989-97;	38	F
PPC-5	Prickly Pear Creek	P 1984-85	8	A & B	S	3	D				P 1994-96	62	F
PPC-6	Prickly Pear Creek	P 1984-85	8	A & B	S	3	D				P 1995 SA 1989-97;	26	
PPC-7	Prickly Pear Creek	P 1984-85	8	A & B	S	3	D				P 1995	47	F
PPC-8	Prickly Pear Creek	P 1984-85	8	A & B	S	3	D				SA	18	F
PPC-9	Prickly Pear Creek Prickly Pear Creek Synoptic	P 1984-85	8	A & B	S	3	D						
PPC-29A	Run				S	3	D						
PPC-30A	Prickly Pear Creek Synoptic Run				S	3	D						
PPC-31A	Prickly Pear Creek Synoptic				S	3	D						
PPC-32A	Run Prickly Pear Creek Synoptic				S	3	D						
PPC-33A	Run Prickly Pear Creek Synoptic				s	3	D						
-	Run Prickly Pear Creek Synoptic											<u> </u>	
PPC-34A	Run				S	3	D						
PPC-35A	Prickly Pear Creek Synoptic Run				S	3	D						
PPC-36A	Prickly Pear Creek Synoptic Run				S	3	D						
PPC-37A	Prickly Pear Creek Synoptic				S	2	D						
PPC-38A	Run Prickly Pear Creek Synoptic				S	3	D		 				
-	Run Prickly Pear Creek Synoptic											-	
PPC-40A	Run				S	2	D						
PPC-101	Prickly Pear Creek										P 1994-97	27	F
PPC-102	Prickly Pear Creek								}		P 1994-97	27	F
PPC-103	Prickly Pear Creek Storm Water Runoff - Off	= 10.5			B 7/6-						P 1994-97	27	F
SITEA	Plant Storm Water Runoff - Off	5/85	1	С	P 7/87	1	E						
SITEE	Plant				P 7/87	1	E						
SITEF	Storm Water Runoff - Off Plant				P 7/87	1	Е						
SITEG	Storm Water Runoff - Off Plant				P 7/87	1	Е						
SITEH	Storm Water Runoff - Off				P 7/87	1	E						
UPPER LAKE	Plant Upper Lake	P 1984-85	4	A	,51	<u> </u>	-					1	
OF ITEN LAKE	оррег саке	1 1304-00	4	М					<u> </u>			<u> </u>	

TABLE 3-2-1. HISTORICAL SUMMARY OF THE WATER, SOIL AND SLAG SAMPLING PROGRAM

	TABLE 3-2-1. H				<u> </u>	Phase I			comp RI/FS				itorina
		10	Phase I		Fall 1986 -		ummer 1987		to Fall/Wint	or 1988		R RI Mon	Winter 1997
		18	964 (0 18	900	Fall 1900 -	Spring/S	ummer 1967	Fall 1967	to Fall/Wint	ei 1900	Spring 196	og to Fall	winter 1997
Site Code	Site Description	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals ⁽¹⁾	Tot. No. of Samp.	Parameter Schedule (2)
Surface Wate	er (Cont.)												
WD-1	Wilson Ditch	5/85	1	В									
WD-2	Wilson Ditch	P 1984-85	22	В							P 5/93	2	Е
WD-3	Wilson Ditch	5/83	1	В							P 5/93	1	E
WD-4	Wilson Ditch										P 5/93	1	E
	onitoring Well Drill Ho	ole Soils		T			T						
APSD-1	Well Site Drill Hole										8/91	8	See Table 3-2-9
APSD-2	Well Site Drill Hole										8/91	10	See Table 3-2-9
APSD-3 APSD-4	Well Site Drill Hole Well Site Drill Hole										8/91 8/91	5 7	See Table 3-2-9 See Table 3-2-9
													arsenic, lead,
APSD-7	Well Site Drill Hole										10/93	5	cadmium, zinc arsenic, lead,
APSD-8	Well Site Drill Hole										10/93	6	cadmium, zinc
APSD-9	Well Site Drill Hole						<u> </u>				10/93	8	arsenic, lead, cadmium, zinc
APSD-10	Well Site Drill Hole										10/93	8	arsenic, lead, cadmium, zinc
APSD-11	Well Site Drill Hole										10/93	7	arsenic, lead, cadmium, zinc
APSD-12	Well Site Drill Hole										10/93	6	arsenic, lead,
APSD-13	Well Site Drill Hole										10/93	12	cadmium, zinc arsenic, lead,
APSD-14	Well Site Drill Hole					1					10/93	6	cadmium, zinc arsenic, lead,
DH-1	Well Site Drill Hole	11/84-12/84	6	G				12/87	6	Н	10/30	Ů	cadmium, zinc
DH-1	Well Site Drill Hole	11/84-12/84	6	G				12/87	7	Н			
DH-3	Well Site Drill Hole	11/84-12/84	4	G				12/87	6	Н			
DH-4	Well Site Drill Hole	11/84	2	G									
DH-5	Well Site Drill Hole	11/84	2	G									
DH-6	Well Site Drill Hole	11/84	2	G				12/87	6	Н			
DH-7	Well Site Drill Hole	12/84	2	G				12/87	6	Н			
DH-8	Well Site Drill Hole	12/84-1/85	6	G									
DH-9	Well Site Drill Hole	11/84	2	G									
DH-10	Well Site Drill Hole	11/84	1	G				12/87	6	Н			
DH-11	Well Site Drill Hole	1/85	1	G			Cognoptial	12/87	6	Н			
DH-13	Well Site Drill Hole				11/86	8	Sequential Extraction & Totals - H	12/87	6	н			
DH-14	Well Site Drill Hole				10/86	5	Sequential Extraction & Totals - H	12/87	5	н			
DH-15	Well Site Drill Hole				10/86	5	Sequential Extraction & Totals - H						
DH-16	Well Site Drill Hole				11/86	5	Sequential Extraction & Totals - H						
DH-17	Well Site Drill Hole				11/86	3	Sequential Extraction & Totals - H						
DH-18	Well Site Drill Hole				12/86	4	Н						
DH-19	Well Site Drill Hole				4/87	9	Н						
DH-20	Well Site Drill Hole				4/87	9	Н						
DH-21	Well Site Drill Hole				4/87	9	SVOA ⁽³⁾ & H						
DH-22	Well Site Drill Hole				4/87	10	H						
DH-23 DH-24	Well Site Drill Hole				4/87	6 10	H H						
DH-24 DH-25	Well Site Drill Hole Well Site Drill Hole				4/87	10 8	SVOA ⁽³⁾ & H					 	
DH-26	Well Site Drill Hole	-			5/87	8	SVOA ⁽³⁾ & H					-	
DH-27	Well Site Drill Hole					Ť	2.2., %11	12/87	9	Н			
DH-28	Well Site Drill Hole							12/87	8	Н			
DH-29	Well Site Drill Hole							12/87	7	Н			

TABLE 3-2-1. HISTORICAL SUMMARY OF THE WATER, SOIL AND SLAG SAMPLING PROGRAM

	1ADLE 3-2-1. II			J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u> </u>				comp RI/FS				to rio a
		10	Phase I 984 to 19	95	Fall 1086 -	Phase II			to Fall/Wint			st RI Mon	-
		15	504 (0 19	00	raii 1986 -	opring/Si	ummer 1987	raii 1987	to Fall/Wint	1900	Spring 19	os io Fall	Winter 1997
Site Code	Site Description	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals ⁽¹⁾	Tot. No. of Samp.	Parameter Schedule (2)
East Helena	Groundwater Monitor	ring Well Dr	ill Hole	Soils									
EH-57	Well Site Drill Hole				5/87	10	Н						
EH-59	Well Site Drill Hole				5/87	7	Н						
EH-60	Well Site Drill Hole							12/87	2	Н			
EH-61	Well Site Drill Hole							11/87	7	Н			
EH-100	Well Site Drill Hole				11/86	10	Sequential Extraction & Totals - H						
EH-101	Well Site Drill Hole				10/86	4	Sequential Extraction & Totals - H						
EH-102	Well Site Drill Hole				11/86	4	Sequential Extraction &						
Plant Site So	il Samples Not Asso	ciated With	Well S	ites			Totals - H			1			
ASEX-SW-1	Acid Plant Demolition	The trial						I			4/93	1	See Table 3-2-8
	Surface Samples Acid Plant Demolition										-		
ASEX-HDS-1	Surface Samples Acid Plant Demolition										4/93 4/93	1	See Table 3-2-8 See Table 3-2-8
ASEX-HDS-2	Surface Samples												
APSD-5	Core Sample										8/91	8	See Table 3-2-3
APSD-6	Core Sample Acid Plant Post Excavation										8/91	7	See Table 3-2-3
AS\S\1EXC	Samples										5/93	1	See Table 3-2-8
C-56 thru C-106	Lower Lake Core Samp.										4/95	121	See Table 3-2-5
LH-1	Lower Lake Core Samp.							10/87	6	Н			
LH-2	Lower Lake Core Samp.							10/87	8	Н			
LH-3	Lower Lake Core Samp.							11/87	8	Н			
LH-4	Lower Lake Core Samp.							11/87	9	Н			
LH-5	Lower Lake Core Samp.							11/87	8	Н			
LH-6	Lower Lake Core Samp.							11/87	7	Н			
LH-8	Lower Lake Core Samp.										10/91	1	See Table 3-2-5
LH-11	Lower Lake Core Samp.										10/91	1	See Table 3-2-5
LH-13	Lower Lake Core Samp.										10/91, 4/92	2	See Table 3-2-5
LH-18	Lower Lake Core Samp.										10/91	1	See Table 3-2-5
LH-20	Lower Lake Core Samp.										10/91, 4/92	2	See Table 3-2-5
LH-26	Lower Lake Core Samp.										10/91	1	See Table 3-2-5
LH-28	Lower Lake Core Samp.										10/91	1	See Table 3-2-5
LH-31	Lower Lake Core Samp.										10/91 5/92, 8/92,	1	See Table 3-2-5
LH-34	Lower Lake Core Samp.										10/92	7	See Table 3-2-5
LH-37	Lower Lake Core Samp.										5/92, 8/92	2	See Table 3-2-5
LH-38	Lower Lake Core Samp.										5/92	1	See Table 3-2-5
LH-41	Lower Lake Core Samp.										5/92, 8/92	2	See Table 3-2-5
LH-42	Lower Lake Core Samp.										5/92, 8/92	2	See Table 3-2-5
LH-46	Lower Lake Core Samp.										5/92	1	See Table 3-2-5
LH-47	Lower Lake Core Samp.										5/92, 8/92	2	See Table 3-2-5
LH-49	Lower Lake Core Samp.										5/92, 8/92	2	See Table 3-2-5
LH-52	Lower Lake Core Samp.										4/87	1	See Table 3-2-5
LH-54	Lower Lake Core Samp.										5/92, 8/92	2	See Table 3-2-5
LLB-1	Lower L. Boundry Core					}			1		11/90	4	See Table 3-2-3
LLB-2	Lower L. Boundry Core										11/90	4	See Table 3-2-3
LLB-3	Lower L. Boundry Core										11/90	3	See Table 3-2-3
LLB-4	Lower L. Boundry Core										11/90	4	See Table 3-2-3
LLB-5 LLB-6	Lower L. Boundry Core	-						-			11/90	3	See Table 3-2-3
LLB-6	Lower L. Boundry Core					1		 	1		11/90	2	See Table 3-2-3 See Table 3-2-3
LLB-7	Lower L. Boundry Core Lower L. Boundry Core					1					11/90 11/90	2	See Table 3-2-3
LOWERLKSED	Lower Lake Sediment	11/84	1	G							11/30		OCC 1 ADIC 3"2"3
APSD-P1 thru	Acid Plant Sediment Drying	11/04	<u> </u>	9		1		1			0/00 0/00	 _	0 T 0.5
APSD-P9 Pile #3 thru	Area Pit Samples Lower Ore Storage Area Pit										8/96-9/96	7	See Table 3-2-9
Pile #119	Samples					ļ					10/94	100	See Table 3-2-3
S-3SED	Sump Lower Ore Storage Area Sediment	ĺ						10/87	1	Н			

TABLE 3-2-1. HISTORICAL SUMMARY OF THE WATER, SOIL AND SLAG SAMPLING PROGRAM

			Phase I			Phase II		C	omp RI/FS		Pos	st RI Mon	toring
		19	984 to 19	985	Fall 1986 - S	Spring/Su	ummer 1987	Fall 1987	to Fall/Wint	ter 1988	Spring 198	89 to Fall	Winter 1997
Site Code	Site Description	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals (1)	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals ⁽¹⁾	Tot. No. of Samp.	Parameter Schedule (2)	Sampling Intervals ⁽¹⁾	Tot. No. of Samp.	Parameter Schedule (2)
Plant Site So	il Samples Not Assoc	ciated With	Well S	ites (Cont.)									
SC-1	Soil Core Samples from Various Sites							11/87	2	Н			
SC-2	Soil Core Samples from Various Sites							11/87	3	Н			
SC-3	Soil Core Samples from Various Sites							12/87	10	Н			
SC-4	Soil Core Samples from Various Sites							12/87	9	Н			
SC-5	Soil Core Samples from Various Sites							12/87	7	Н			
SP-1SED	Speiss Pond Sediment							11/87	1	Н			
SPIT-1	Speiss Pit Post Excavation Samples										7/95	1	arsenic, cadmium copper, lead, zinc
SPIT-2	Speiss Pit Post Excavation Samples										7/95	1	arsenic, cadmium, copper, lead, zinc
SP-SS-1 thru SP-SS-9	Speiss Pond Core Samples										7/89	87	arsenic, cadmium, copper & lead (EPTOX only)
SS-1 thru SS-31 (4)	Plant Site Surface Soil Samples							1987	26	See Table 4-1-1			(=: : : : : : : : : ;)
ST-2SED	Sinter Plant Sediment							10/87	1	Н			
TH-1	Thornock L. Core Samp.							12/87	4	Н			
TH-2	Thornock L. Core Samp.							12/87	8	Н			
TL-001 thru TL-009	Thornock Lake Surficial										12/91	9	See Table 3-2-7
TL-3	Thornock L. Sediment										6/91	6	See Table 3-2-7
TL-4	Thornock L. Sediment										6/91	6	See Table 3-2-7
TREATSLUDG	Lower Lake Sludge										6/92	1	See Table 3-2-5
TT-1SED	Thornock Lake Sediment	11/84	1	G				10/87	1	Н			
•	es Associated With Si		_										
PPC-3SED	Prickly Pear Cr. Sediment	11/84,5/85	2	G	<u> </u>								
PPC-4SED	Prickly Pear Cr. Sediment	11/84,5/85	2	G									
PPC-5SED	Prickly Pear Cr. Sediment	11/84,5/85	2	G	<u> </u>	<u> </u>							
PPC-6SED	Prickly Pear Cr. Sediment	11/84,5/85	2	G	<u> </u>								
PPC-7SED	Prickly Pear Cr. Sediment	11/84,5/85	2	G	<u> </u>								
PPC-8SED	Prickly Pear Cr. Sediment	11/84,5/85	2	G									
PPC-9SED UPPERLKSED	Prickly Pear Cr. Sediment	11/84,5/85	2	G G	<u> </u>	\vdash						-	
WD-2SED	Upper Lake Sediment Wilson Ditch Sediment	11/84 11/84	1	G	 	$\vdash \vdash$						1	
WD-2SED WD-3SED	Wilson Ditch Sediment	11/84	1	G	 	$\vdash \vdash$							
WD-33ED WD-2	Wilson Ditch Pit Samples	11/04	+		 	\vdash		12/87	4	Н			
WD-2	Wilson Ditch Pit Samples	 	H	\vdash	—	\vdash		12/87	4	Н	 		
WD-4	Wilson Ditch Pit Samples	1	$\vdash \vdash$			\vdash		12/87	4	н		1	
WD-5	Wilson Ditch Pit Samples	1	$\vdash \vdash$			\vdash		12/87	4	н		1	
WD-A (PRE)	Wilson Ditch Proper Pit Samples										2/93, 4/93	94	arsenic, lead, cadmium
WD-A (PST)	Wilson Ditch Sediment										4/93-4/94	146	arsenic, lead, cadmium
WD-B (PST)	Wilson Ditch Spur Sediments										4/93	13	arsenic, lead, cadmium
WD-C (PST)	New Wilson Ditch Soil										4/93-5/93	19	arsenic, lead, cadmium
Slag													
FSLAG	Slag Pile Leachate				D 4000 07								
	Slag I lie Leachate				P 1986-87	6	Н						

Notes: 1) A = Annual Sampling; SA = Semi-Annual Sampling; S = Seasonal; and P = Periodic Sampling.

²⁾ Refer to Table 3-2-2. Sampling Parameter Schedule

³⁾ SVOA = Semi-Volatile Organic Analysis

⁴⁾ Refer to Table 4-1-1 for data. Hydrometrics did not collect these samples, therefore, data is not in Appendix 3-1-3.

TABLE 3-2-2. SAMPLE PARAMETER SCHEDULE

	I				Schedules				
	Α	В	С	D	E	F	G	Н	
			_	_			Phase I	Post Phase	•
Parameter	Complete (1)	Partial (1)	Special A (1)	Standard ⁽²⁾	Special B (2)	Special C (3)	Soils (1)	I Soils (2)	Slag (2)
Physical Parameters									
Specific Conductivity (field & lab)	Х	Х	Х	Х	Х	Х			
pH (fld & lab)	Х	Х	Х	Х	Х	Х			
Depth to Water Level or Flow	X ⁽⁴⁾	X (4)	X ⁽⁴⁾	Х	Х	Х			
Total Dissolved Solids	Х	Х	Х	Х	Х	Х			
Total Suspended Solids									
(Surface Water Only)	Х	Х	Х	Х	Х	X			
Dissolved Oxygen	X ⁽⁴⁾	X (4)	X ⁽⁴⁾	Х	Х	Х			
Temperature	X ⁽⁴⁾	X (4)	X ⁽⁴⁾	X ⁽⁴⁾	X ⁽⁴⁾	Х			
Ions and Cations									
Sulfate	Х		Х	Х	Х	Х			
Chloride	Х		Х		Х	Х			
Total Alkalinity as CaCO₃	Х		Х		Х	X (5)			
Bicarbonate	Х		х	Х	Х	X ⁽⁵⁾			
Calcium	X		X		X	X ⁽⁵⁾			
Magnesium	X		X		X	X ⁽⁵⁾			
Sodium	X		X		X	X ⁽⁵⁾			
Potassium	X		X		X	X ⁽⁵⁾			
Arsenic and Metals (total and dissolved for		tori diccolu		lwater)	^	X · ·			
Aluminum	I Surface wa	lei, uissoiv	X	water)					
Antimony			X				Х		
Arsenic	Х	Х	X	Х	Х	Х	X	Х	Х
Arsenic III		_^_			X ⁽⁶⁾	X	^		
Arsenic V					X ⁽⁶⁾	X		1	
Barium	1		Х		^	^	Х		Х
Beryllium			X				^	1	^
Cadmium	х	Х	X	Х	Х	х	Х	Х	Х
Chromium			X	_ ~			X		X
Cobalt			X				X		
Copper	Х		X		Х	Х	X	Х	Х
Iron	Х		Х	Х	Х		Х	Х	Х
Iron II					X ⁽⁶⁾				
Iron III					X ⁽⁷⁾				
Lead	х	Х	Х	х	X		Х	Х	Х
Manganese	X		X		X	Х	X		X
Mercury			X				X		X
Nickel			Х					Х	
Selenium			Х						Х
Silver			Х				Х		Χ
Thallium			Х						
Tin			Х						
Vanadium	Į		Х				Х		
Zinc	Х	Х	Х	Х	Х	Х	Х	Х	Х
Organics									
Volatile Organics (8)					Х	Х	Х		
Semi-Volatile Organics (9)					X	Х	X		
Fuel Hydrocarbons (Gas & Diesel) ⁽¹⁰⁾		1		l	Х	Х			

Notes: 1) ASARCO and Hydrometrics, 1984. Hydrogeological Investigation of the Asarco East Helena Plant, Water Resources Monitoring Plan, June 29,1984.

- 2) Hydrometrics, 1986. Water Resources Investigation ASARCO East Helena Plant Phase II, Remedial Investigation Work Plan, August, 1986; and
 - Hydrometrics and MDI, 1987. Comprehensive Remedial Investigation/Feasibility Study Plan, ASARCO, East Helena, Montana.
- 3) Variation of Special B analyte list used for the Post RI/FS Sampling.
- 4) Required by Work Plan but was not consistantly recorded.
- 5) Analyzed in the Spring only for Plant Process Plant Fluids, Ground Water and Private Well samples.
- 6) Not analyzed in Plant Process Fluids.
- 7) Required by Work Plan but was not analyzed.
- 8) EPA Method 624, Target Compound List Only analyzed for sites DH-13, EH-60 and EH-61.
- 9) EPA Method 625, Target Compund List, Only analyzed for sites DH-13, DH-17(1 sample event), DH-24(1 sample event), EH-60 and EH-61.
- 10) Only analyzed for sites, DH-13, DH-24, EH-60 and EH-61, EH-62. Carbon analyses for Site DH-27 & DH-28, starting Fall 1996.
- 11) Hydrometrics, 1986. Water Resources Investigation Asarco East Helena Plant Phase II, Remedial Investigation Work Plan, August 1986. Sampled during construction phase only.

were collected by Asarco for information purposes and were not part of an established work plan.

Borehole samples were taken at sites APSD 5 and APSD 6 in August of 1991. These samples were sent to Asarco's Technical Services Center in Salt Lake City (TSC SLC) for Extraction Procedure Toxicity (EPTOX) tests and the leachate was tested for arsenic and metals.

Soil and leachate samples were analyzed according to each laboratories' analytical plan (LAP) and quality assurance plan (QAP). The results for these samples were not validated.

Table 3-2-3 summarizes sampling conducted in the areas between Upper Lake, Lower Lake and Prickly Pear Creek.

3.2.2.2 Subsurface Soils

Post RI/FS sampling of subsurface soils was conducted in conjunction with the implementation of remedial measures for Lower Lake, the former Thornock Lake area, the Speiss Pond area, and the acid plant water treatment facility. The data collection associated with remedial activities in each of these areas is described in Section 3.2.3. Additional subsurface soils characterization was also conducted in the Acid Plant sediment drying area and in the area between Upper and Lower Lakes. This included soils data from test pits, soil borings and installation of monitoring wells.

In November of 1990, soil samples were taken at eight test pit sites (LLB-1 through LLB-8) in the area between Upper and Lower Lake in order to characterize the soils. Each site was sampled at the following intervals: 0-1 ft., 2-3 ft., 3-5 ft., and 9-10 ft. Samples were analyzed for Toxic Characteristic Leaching Procedure (TCLP) and total arsenic and metals. These data were collected by Asarco for information purposes and were not part of an established work plan.

Borehole samples were taken at sites APSD-5 and APSD-6 in August of 1991. These samples were sent to Asarco's Technical Services Center in Salt Lake City (TSC-SLC) for Extraction Procedure Toxicity (EPTOX) tests and the leachate was tested for arsenic and metals.

<u>Soil and leachate samples were analyzed according to each laboratories' analytical plan</u> (LAP) and quality assurance plan (QAP). The results for these samples were not validated.

<u>Table 3-2-3 summarizes sampling conducted in the areas between Upper Lake, Lower Lake</u> and Prickly Pear Creek.

TABLE 3-2-3. AREAS BETWEEN UPPER LAKE AND LOWER LAKE, LOWER LAKE AND PRICKLY PEAR CREEK, AND LOWER ORE STORAGE AREA SAMPLING SUMMARY

		ru LLB-8 Soil mples	APSD-5 and 6 Drill Hole Soils 15 Samples	Pile#3-Pile #119 (Stockpiles) 100 Samples
Parameter	TCLP	Total	EPTOX	XRF
Arsenic	X	X	X	X
Barium	X		X	
Cadmium	X	X	X	
Chromium	X		X	
Iron		X		
Lead	X	X	X	X
Manganese		X		
Mercury	X		X	
Selenium	X		X	
Silver	X		X	
Zinc		X		

4. EVALUATION OF CURRENT CONDITIONS

As described in Sections 1.0 and 3.0, data from the plant site surface soils, process fluids, surface water, slag and ore storage operable units were obtained and evaluated as part of the Process Ponds RI/FS (Hydrometrics, 1989) and the Comprehensive RI/FS (Hydrometrics, 1990a). Additional data were collected as part of post-RI monitoring efforts from 1990 through 1998, the RD/RA efforts for process ponds and other non-CERCLA activities. In this section, current soil and water quality trends are examined within the plant site and along potential migration pathways.

4.1 PLANT SITE SOILS AND ORE STORAGE AREAS

The evaluation of surface soils, subsurface soils and the ore storage areas includes discussion of on-site surface soils, stockpiles and slag. Process pond sediments are addressed separately in Section 4.2, surface water bottom sediments in Section 4.3 and subsurface sediment stratigraphy and quality in Section 4.4.

4.1.1 Surface Soils

Plant site surface soils were addressed as part of the Comprehensive RI/FS (Hydrometrics, 1990a). The plant site surface soil investigation focused primarily on ore storage areas in the plant and other unpaved areas at various locations.

Surface soil samples (0-4 inch depth) were collected during installation of monitoring wells at nine sites (see Figure 4-1-1). Surface soil samples (0-1 inch depth) were also collected at 26 other plant site locations (see Figure 4-1-1). The areas sampled for surface soils (0-1 inch depth) included the former Upper Ore Storage Area (4 samples), the Lower Ore Storage Area (5 samples), railroad tracks east and south of the Thawhouse (7 samples), the perimeter of the slag pile (4 samples), other unpaved areas within the main facility (4 samples) and unpaved areas outside of the main facility (2 samples).

The sampling methodology <u>used at the surface soil sampling sites</u> is described in detail in the Comprehensive RI/FS (Hydrometrics, 1990a). In general, three samples were collected around a center stake and composited into one sample at each location. <u>The samples were analyzed for the 12 metals shown in Table 4-1-1</u>. A statistical summary of the data is in <u>Table 4-1-2</u>. Arsenic, cadmium, copper, lead and zinc concentrations in surface soils are shown for both surface soil sampling sites and monitoring well locations on Figure 4-1-1.

All of the metals analyzed in plant site soils were elevated compared to background values (see Table 4-1-2). Of the metals analyzed arsenic, cadmium, copper, lead and zinc had the highest concentrations. The highest concentrations of arsenic, cadmium and lead were from samples collected in the Upper Ore Storage Area and the railroad tracks east and south of the Thawhouse. The lowest concentrations were from samples collected from the perimeter of the slag pile and unpaved areas outside of the plant site.

In the RI (Hydrometrics, 1990a), an analysis of variance (ANOV) was calculated to test differences between geometric mean concentrations of metals for different use areas on the plant site. The least significant difference (LSD) method of multiple comparisons was then used to separate the means. Table 4-1-3 shows the results of the analysis.

4.1.2 Subsurface Soils

Plant site subsurface soils were addressed as part of the Comprehensive RI/FS (Hydrometrics 1990a). During the RI, subsurface samples were collected from 50 soil boring and monitoring well locations on the site (see Exhibit 4-1-1). Since completion of the RI (1990) supplemental subsurface soil data has been obtained as part of post-RI remedial activities for the Process Ponds. The post-RI subsurface data include collection of sample cores from Lower Lake, Former Thornock Lake, the Speiss Pond and Pit areas, the former Acid Plant Water Treatment Facility settling pond, and the Acid Plant Sediment Drying Areas.

Table 4-1-1 - Surface Soil Sample Results - 1987 Phase II Investigation

						Para	meter					
Station #	Ag	As	Cd	Cu	Hg	Cr	Mn	Pb	Sb	Se	Tl	Zn
SS-1		6075	6000	14575	240	22	1590	19350	980	423	182	23625
SS-2	209	3475	1813	3225	236	20	230	24975	107	518	118	10050
SS-3	64	1078	413	1090		19	400	10875	5	69	35	3075
SS-4	193	5650	14725	12175	104	23	890	23625	783	186	280	44050
SS-5	199	1495	1093	8850	2.2	27		21875	53	13	33	46625
SS-6	124	3300	253	4200	9.2	14	453	19400	5	13	59	3975
SS-7	157	3400	373	8500	4.5	12	195	22350	508	19	57	43725
SS-8	185	3800	1013	18600	15	30	1285	21400	189	71	29	14250
SS-10	197	3900	1613	8350	12	38	1823	23900	197	17	52	30425
SS-11	169	6525	5800	20700	17	36	2353	22100	1970	113	103	67175
SS-12	186	35500	5325	31450		27	2445	19975	1395	97	86	63650
SS-14	63	1098	212	1918	0.97	12	308	8900	206	21	9.9	30125
SS-15	30	385	172	9750	2	29	1858	3250	5	13	9.9	3975
SS-16	14	121	92	16375	0.75	14	338	1368	5	13	9.9	1868
SS-17	74	795	212	1813	0.87	15	220	6200	129	13	12	2235
SS-18	174	13450	23400	29200	70	86	2018	19325	2260	498	515	67175
SS-19	199	21625	2373	19850		46	11700	20250	1943	99	74	23300
SS-20	179	5450	1733	18625	0.6	27	1615	19225	2850	31	63	26275
SS-21	211	17075	1693	35350		79	950	22575	4950	221	52	14875
SS-22	201	3100	2213	11300	0.87	13	1083	21950	1770	13	76	23625
SS-23	12	121	212	320		26	410	11600	5	13	14	1093
SS-24	169	2115	613	4275	19	18		16575	5	13	33	7325
SS-28	214	8625	2525	23600	360	15	1703	1535		320	220	23925
SS-29	174	9525	2575	23700	90	27	2600	20300	4125	142	278	48550
SS-30	199	1633	373	5600	4	15	1510	12725	425	15	25	7925
SS-31	167	2625	813	6900	4.7	27	660	14600	81	33	27	84650

Notes: All concentrations reported in ug/g (dry wt.).

Surface soil refers to soil sampled at a depth of 0-1 inches.

Table 4-1-2 - Statistical Summary of Soil Samples - 1987 Phase II Investigation

		Arithmetic	Standard	Minimum	Maximum	Geometric	Geo. Mean ⁽²⁾	Enrichment
Element	$\mathbf{N}^{(1)}$	Mean	Deviation	Value	Value	Mean	Background	Factor ⁽³⁾
$\mathbf{A}\mathbf{g}$	25	150.5	62.9	12.0	214.0	122.1	0.20	610.6
$\mathbf{A}\mathbf{s}$	26	6228.5	7977.8	121.0	35500.0	2987.3	16.50	181.0
Cq	26	2985.8	5176.2	92.0	23400.0	1127.5	0.24	4697.7
C	26	27.6	18.3	12.0	86.0	23.8	15.30	1.6
Cu	26	13088.1	9953.9	320.0	35350.0	8488.3	16.30	520.8
Hg	21	56.8	100.0	9.0	360.0	6.6	0.08	124.2
Mn	24	1609.9	2283.8	195.0	11700.0	6.896	336.00	2.9
Pb	26	16546.3	7213.2	1368.0	24975.0	13552.4	11.60	1168.3
Sp	25	0.866	1365.5	5.0	4950.0	193.5	0.27	716.5
Se	26	115.3	155.2	13.0	518.0	49.1	0.07	701.2
II	26	94.3	116.0	6.6	515.0	52.9	0.09	588.2
$\mathbf{Z}\mathbf{n}$	26	27597.9	23891.5	1093.0	84650.0	16043.8	46.90	342.1

Notes:

All concentrations reported in ug/g (dry wt.). Surface soil refers to soil sampled at a depth of 0-1 inches.

(1) Unequal sample sizes due to rejection of some data during data validation process.
(2) Source: Comprehensive RI/FS Report (Hydrometrics, 1990a)
(3) Enrichment factor = geometric mean plant soils / geometric mean background. Footnote:

Table 4-1-3 - Geometric Means of Soil Samples by Area

Element ¹ Stor Ag 1 As 33 Cd 2	Storage Area 137.1 B 3365 BC 2851 C	Storage Area				
	137.1 B 365 BC 2851 C		South of Thawhouse	Slag Pile	within Main Facility	Outside Main Facility
	365 BC 2851 C	169.8 B	162.9 B	45.8 A	196.3 B	45.1 A
	2851 C	3013 B	9057 C	605.3 A	4519 BC	505.8 A
		699.8 AB	2710 C	228.6 A	1521 BC	360.3 AB
	20.9 A	22 AB	38.4 B	19.1 A	16.7 A	21.6 AB
Cu 5	5000 A	8670 BC	17219 C	6776 BC	13709 C	1169 A
$\mathbf{H}_{\mathbf{g}}$	180.7 B	6.96 A	4.99 A	1.62 A	18.3 A	19 AB
	601.2 A	674.5 A	1726 A	598.4 A	1641 A	410.2 A
Pb 18	.8750 BC	21727 C	17298 BC	4898 A	9661 AB	13868 BC
	142.2 B	87.1 B	1556 C	25.4 AB	1459 C	5 A
Se 2	230.1 C	20.8 A	90.2 BC	18.5 A	54.6 AB	13 A
TI 1	120.5 D	44.2 BC	75 CD	12.7 A	103.8 CD	21.5 AB
Zn 13	13397 A	20370 A	24831 A	11722 A	21 <i>577</i> A	2831 A

Notes:

All concentrations reported in ug/g (dry wt.). Surface soil refers to soil sampled at a depth of 0-1 inches.

(1) Letters A, B, C & D represent statistical groupings. Values within same element (rows) followed by same letter not significantly different at P=0.10. Footnote:

2/1/2007 12:29 PM

4.1.2.1 RI/FS Subsurface Soil Data

During the RI, subsurface samples were collected from 45 soil borings at monitoring well locations during well construction. Supplemental subsurface data were also collected from test pit locations at nine of the monitoring well sites (DH-1, DH-2, DH-3, DH-6, DH-7, DH-10, DH-11, DH-13 and DH-17), and from 5 soil core locations (SC-1 through SC-5) which were not completed as monitoring wells. With the exception of the test pit locations, soil samples were collected at two foot increments to a depth of 10 feet using split-spoons, with additional sampling conducted at 5 foot intervals to the depth of completion. At test pit locations, additional increments were sampled (0-4 inches, 4-8 inches, 8-12 inches, 1-2 feet, 2-3 feet, 3-4 feet and 4-5 feet) to a depth of 5 feet. The number of samples analyzed at individual sites varies, depending on the depth of completion and sample recovery rates. Subsurface soil samples collected during the RI were analyzed for total arsenic and metals. Sampling intervals and soil analytical results are shown in the soil quality database in Appendix 3-1-3. Exhibits 4-1-1, 4-1-2 and 4-1-3 present the soil quality data for arsenic, cadmium and lead at each sampling location.

As shown in Exhibit 4-1-1, arsenic concentrations in subsurface soil vary from less than 100 mg/kg to greater than 10,000 mg/kg within the plant site area. The highest concentrations of arsenic (above 5000 mg/kg) were in the southern half for the site in the former acid plant sediment drying areas, at DH-19, ASPD-13 and ASPD-14 near the former Acid Plant Water Treatment Facility. Elevated concentration of arsenic (above 1000 mg/kg) also was observed in fill material in the area between Upper Lake and Lower Lake. Arsenic concentrations in excess of 1000 mg/kg were also detected in shallow soils from the southern end of the lower ore storage yard (SC-4), and in soils at DH-21, DH-9 and DH-23. Arsenic concentrations are generally less than 500 mg/kg in the subsurface soils on the northern half of the plant site and in the East Helena area.

Many of the sampling locations in the plant site area show a progressive decrease in arsenic concentration with depth and then an increase again at the water table (Figure 4-1-2). The

concentration increase within the saturated zone is an indication of lateral transport and attenuation processes within the aquifer. As shown in Figure 4-1-2, these increased concentrations generally extend only 10 to 15 feet beneath the water table.

Cadmium concentrations in subsurface soil range from less than 1 mg/kg to greater than 1000 mg/kg (Exhibit 4-1-2). Similar to the pattern observed for arsenic, the highest cadmium concentrations (greater than 500 mg/kg) were found in the Acid Plant Water Treatment Facility at wells DH-19 and ASPD-14. Cadmium values above 100 mg/kg were found at various locations on the plant site including the area between Upper Lake and Lower Lake, the ore storage yard (SC-4 and SC-3), the Speiss Pit area (DH-28) and in one sample from DH-10 on the northern edge of the slag pile.

Lead concentrations in subsurface soils range from less than 10 mg/kg to 197,000 mg/kg (Exhibit 4-1-3). The areas of high concentration are generally similar to arsenic and cadmium. Lead is also high at locations where slag is present. Lead concentrations in excess of 10,000 mg/kg were detected at various locations on the southern half of the plant site including:

- The former acid plant sediment drying areas (ASPD-14 and DH-29),
- In DH-19 near the former acid plant water treatment facility,
- <u>In fill material in the former upper ore storage area between Upper and Lower Lake,</u>
- At sites where slag is present (DH-4, DH-5 and DH-23), and
- In shallow fill material at DH-27.

The highest arsenic and metal concentrations are associated with previously identified source areas on the southern half of the plant site.

FIGURE 4-1-2. SOIL ARSENIC CONCENTRATIONS VERSUS DEPTH AT SELECTED PLANT SITE MONITORING WELL LOCATIONS

4.1.2.2 Post-RI Subsurface Sample Data

Since the RI, additional subsurface soil characterization was conducted as part of implementation of remedial measures in accordance with the Process Ponds ROD. The results of these additional investigations are described below:

Lower Lake

The Record of Decision (ROD), issued by the Environmental Protection Agency (EPA) in November 1989, required the removal of all process sludge plus 24 inches of underlying marsh deposits from Lower Lake. The Explanation of Significant Differences (ESD), issued by the EPA on June 17, 1993, modified the ROD removal requirements by reducing the removal depth of underlying marsh deposits from 24 inches to six inches. The ESD was based on an examination of the decrease of arsenic and metals in the marsh deposits with increasing depth (Hydrometrics, 1993). The ESD explained:

"... core samples were taken and leachability tests were conducted for each layer, as well as for the two layers together. The additional tests demonstrated that the sludge layer, despite being delisted, exhibits characteristics of a hazardous waste. The results also indicated that the underlying marsh sediments were not the source of contamination that they were originally thought to be; in fact, the tests concluded that by excavating only six inches of marsh sediments instead of two feet of marsh sediments, the remedy would be protective of human health and the environment."

Beginning in 1994 and concluding in 1996, process sludge and the top 6-inches of the marsh deposits (collectively referred to as Lower Lake sediments) were dredged from the lake. The dredged sediments were mechanically dewatered and the filter cake from the dewatering operation was transported to an interim covered stockpile in the Lower Ore Storage Area. Approximately 31,000 cubic yards of dewatered Lower Lake sediments were transported to the Lower Ore Storage Area. Four thousand cubic yards of these sediments were smelted

prior to the remainder of stockpile being covered with a geomembrane liner in October 1997. The sediments were covered in accordance with the plan for a Short Term Storage Facility for Lower Lake Process Sludge and Marsh Deposits (Hydrometrics, 1997d). The sediments will remain in this interim storage facility while EPA considers Asarco's request to modify the sediment smelting requirement of the ROD, and instead dispose of these materials in a proposed on-site CAMU.

As part of Lower Lake remedial design and remediation activities, an extensive core sampling and subsequent analysis program was conducted in April and June, 1995 (Hydrometrics, 1995). Results of this program provide a comprehensive assessment of the sediments dredged from Lower Lake as well as characterize the marsh deposits remaining in the lake.

In April and June of 1995, sediment core samples were collected at 42 sites in Lower Lake for laboratory analysis of arsenic, copper, cadmium, lead and zinc. Soil samples were composited in 6 inch intervals and submitted for XRF analysis. The soil core lithology was logged in the field as process sludge, top of the marsh deposits and marsh deposits. These distinctions were used for the summary statistics presented in Table 4-1-4. The purpose of the sampling program was to determine as accurately as possible, the elevation of the interface between the process sludge and the underlying marsh deposits, since the interface was the "benchmark" from which the required dredging was determined. Since the "benchmark" for setting the Lower Lake sediments removal target was the top of the marsh deposits, lithological descriptions alone should have provided sufficient data to determine this interface. However, XRF analyses were also conducted to provide additional assurance that the process sludge/marsh deposits interface was accurately located, especially in areas where there were no distinct sand layers to uniquely characterized the marsh deposits. In this regard, lithological descriptions and XRF analysis (total arsenic and metals) were compared for each of the analyzed cores to verify the correlation between lithologic descriptions and

TABLE 4-1-4: STATISTICAL SUMMARY OF LOWER LAKE SOIL CORE DATA

Interval 1 (Process Sludge)	Total Arsenic (mg/Kg)	Total Cadmium (mg/Kg)	Total Copper (mg/Kg)	Total Lead (mg/Kg)	Total Zinc (mg/Kg)
(* * ocess sauge)	(**********	(88/			
Geometric Mean	13249	2258	6352	30620	1958:
Average	16582	2994	7421	34128	2147
Median	13694	2522	6594	32800	1879
Minimum	2532	452	2131	11891	687
Maximum	40860	15524	16144	70170	4259
Standard Deviation	10178	3049	4123	15855	937
Count	21	21	21	21	2
Interval 2					
(Top of Marsh to 6 inches)					
Geometric Mean	1879	263	1143	6018	584
Average	2130	306	1378	7193	639
Median	1865	254	1091	6146	575
Minimum	665	54	240	1457	176
Maximum	6924	758	3753	18017	1124
Standard Deviation	1285	174	870	4240	266
Count	21	21	21_	21	2
Interval 3					
(6 to 12 inches)					
Geometric Mean	1040	52	675	2923	344
Average	1513	215	945	5006	418
Median	930	109	568	2191	279
Minimum	188	3	93	541	72
Maximum	10668	2077	4728	37422	1166
Standard Deviation	1812	388	961	6896	287
Count	41	41	41	41	- 4
Interval 4					
(12 to 18 inches)					
Geometric Mean	784	128	595	2416	308
Average	1882	624	1146	6485	422
Median	707	103	495	1852	290
Minimum	126	15	75	407	59
Maximum	11540	8269	5671	37380	167:
Standard Deviation	3071	1827	1625	11189	394
Count	20) 20	20	20	
Interval 5					
(18 to 36 inches)					
Geometric Mean	260	31	409	1071	20:
Average	1171	106	973	4714	29
Median	113	3 13		666	16
Minimum	77	8	91	292	9
Maximum	6917	480	4644	28069	107
Standard Deviation	2544	177	1641	10323	35
Count	1	7	7	7	

arsenic and metals concentrations in the process sludge and marsh deposits. In addition, ten split samples were analyzed at Asarco's TSC-SLC laboratories for the same parameters. An excellent correlation between XRF and wet chemistry methods were obtained.

XRF analysis of the cores found that total arsenic and metals values dropped off immediately and significantly as materials containing sand and/or mica, which uniquely characterized the presence of marsh deposits, were encountered. In addition, areas which had been dredged in 1994 and did not contain any of the material determined to be process sludge, showed relatively low total metals levels. These areas, which contained no process sludge and had relatively low metal values (i.e., metal values comparable to those found more than six inches below the interface in areas not dredged), were determined to have met the project removal targets. In some areas, it was difficult to determine the top of the marsh deposits because the cores consisted mostly of clay and little or no sand or mica. In these areas, XRF data were compared to XRF data for other areas of the lake where the top of the marsh deposits was clearly evident from the lithological logs to determine removal requirements.

Other Lower Lake sediment core samples were also collected at various times as part of the Lower Lake remediation. The extent of each of these sample collections was more limited than the 1995 effort and, typically, the samples were subjected to various leaching methods instead of total constituents by XRF. Results of these other analyses were, however, consistent with analytical results for the 1995 samples, in that, all results show substantial arsenic and metals were present in the process sludge, but decline rapidly once in the marsh deposits were encountered. Since a detailed discussion of the results of these other sampling efforts would not substantively contribute to a better understanding of the marsh deposits still in Lower Lake, that discussion is not included in this document. However, for purposes of

including all the available information on Lower Lake sediment, all of the data are included in Appendix and the supplemental sampling events are outlined below.

- <u>In October 1991, core samples were collected at eight sites. TCLP tests were conducted on these core samples.</u>
- Additional core samples were gathered in April and May 1992 from nine sites.
 EPTOX and TCLP tests were conducted on these core samples and the leachate was analyzed for total arsenic and metals. During the April and May 1992 sampling period, three additional core samples of Lower Lake bottom sediments were collected; one from a previously unsampled site and two from sites originally sampled in October, 1991. These three samples were also analyzed for total arsenic and metals.
- In August of 1992, seven sites from the April and May 1992 sampling event were re-sampled and the leachate from EPA Method 1312 and EPTOX were analyzed for total arsenic and metals.
- In June 1992, one treatment sludge sample was collected from the in-situ pilot scale treatment area. This sample was analyzed for total arsenic and metals.
- In October 1992, five core samples were taken at six inch intervals (from 8.5 ft. to 11.0 ft. below the water surface) from site LH-34 which had been previously sampled in August 1992. These samples were analyzed for total arsenic and metals.

Former Thornock Lake

Former Thornock Lake was an unlined process pond used to contain plant water and storm water runoff prior to 1987. Thornock Lake was replaced with a steel tank within a concrete vault during 1986 and 1987. Prior to placement of the tank, a portion of the sediments in the former pond area were removed to a depth of five feet. At this depth, test results from the underlying coarse sediments showed that arsenic and metal concentrations were near background level (refer to Table 4-1-5, sites TH-1 and TH-2). The excavated area was

TABLE 4-1-5: FORMER THORNOCK LAKE SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM AND LEAD

Sample	Sample	Sample		Total 1	Total Metals (mg/Kg)	(g)	EP To	EP Tox (mg/L) ⁽²⁾		SPLP	SPLP (mg/L) (2)(4)	
Site	Date	Depth ⁽¹⁾	Material	As	Cd	Pb	As	PO	Pb	As	Cd	Pb
TH-1	12/18/87	1-2 ft.		34950	16525	17325			1			
	12/18/87	2-3 ft.	***	43900	35000	21075	1	****	1	-	-	
	12/18/87	3-4 ft.	1	120375	106950	21875	1	1	1	****		-
	12/18/87	4-5 ft.	****	52	0.75	8.9	-				*****	-
TH-2	12/18/87	0.5-2 ft.		169	242	8935			1	*****		1
	12/18/87	2-4 ft.		4	3.8	221		****	-	-	-	T
	12/18/87	6-8 ft.		22	3.4	170	1	1	1			T
	12/18/87	8-10 ft.		53	1.9	14	-		-			T
	12/18/87	10-12 ft.		161	5.5	2	-	-		1	1	-
	12/18/87	15-17 ft.		164	3	28			-	1	-	-
	12/18/87	20-21 ft.		52	1.5	24	-	-	-	1	1	-
	12/18/87	25-27 ft.		21	1.5	41			-	-		1
TL-3	6/24/91	0-4 inches	Fine-grained sediments	45000	33175	158500	193	133	9.0	1	-	
	6/24/91	4-12 inches	Fine-grained sediments	43900	23225	95000	58.5	31.3	0.3	1	-	-
	6/24/91	1-2 ft.	Fine-grained sediments	36254	15725	64000	118	58.2	1.6	-	1	
	6/24/91	2-3 ft.	Fine-grained sediments	455	22	2183	0.2	<0.1	0.3	1		
	6/24/91	3-4 ft.	Alluvium	1458	=	230	9.5	<0.1	<0.1	*****	1	-
	6/24/91	4-5 ft.	Alluvium	580	14	353	9	0.1	<0.1			1
TL-4	6/24/91	0-4 inches	Fine-grained sediments	4375	2378	8875	13	91	0.5		1	1
	6/24/91	4-12 inches	Fine-grained sediments	550	270	066	3.2	9.0	<0.1	1		-
	6/24/91	1-2 ft.	Fine-grained sediments	940	458	066	1.9	0.2	<0.1	1		-
	6/24/91	2-3 ft.	Fine-grained sediments	375	127	19	4.8	0.3	<0.1	-		I
	6/24/91	3-4 ft.	Fine-grained sediments	310	105	64	4.7	0.2	40.1		-	-
	6/24/91	4'-4.5'	Alluvium	535	154	99	3.6	0.1	-00	1		1
TL-001	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	1163	135	328	2.8	0.15	<0.1	1.4	0.01	7
TL-002	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	1788	493	5250	2.0	1.9	<0.1	0.63	0.31	7
TL-003	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	1053	235	1225	2.0	0.78	<0.1	1.6	0.05	\ -
TL-004	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12* dia)	853	23	453	2.2	0.02	<0.1	2.0	<.01	1.7
TL-005	12/10/91	+1 ft.	Slag/Sludge sample (above grade)	3055	510	14,500	0.93	1.3	0.8	1.2	<.01	7
7L-006	12/10/91	0	F. gr. sludge intermixed with slag pieces (to 6" dia.)	750	2.2	86	0.23	<.01	0.1	0.22	<.01	v
TL-007	12/10/91	1-2 ft.	F. gr. sludge intermixed with slag pieces (to 6" dia.)	513	0.91	33		<.01	9.1	0.32	<.01	7
TL-008	12/10/91	2-3 ft.	Sandy, clayey, silt vernucuilte, pyrite present	1400	27	55	2.6	<.01	0,1	3.00	<.01	- -
000-TT	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	829	28	130	1.8	10>	1.0>	2.2	<.01	~

Notes: (1) Measured from top of natural sediment - i.e., initial pond bottom elevation.

(2) EPToxicity Limits: As=5 mg/L, Cd = 0.5 mg/L, Pb = 5 mg/L
 (3) SPLP - Synthetic Precipitation Leach Procedure

backfilled with clean fill to facilitate placement of the new tank and vault. Sediments excavated from Former Thornock Lake were smelted.

The 1989 Process Ponds ROD required that the remaining sediments be removed from former Thornock Lake. The depth of excavation was determined by EP toxicity testing of the sediments. In June 1991 twelve pre-excavation soil samples from Former Thornock Lake were collected from two test pits (TL-3 and TL-4), at each end of the former pond area (see Figure 4-1-3). Soil samples were collected at approximately one-foot intervals to a total depth of 4.5 feet at TL-3 and to 5 feet at TL-4. Laboratory analyses of these samples showed that the majority of the metals and arsenic were contained in fine-grained sediments that had accumulated within the former process pond (Table 4-1-5).

The Thornock Lake bottom sediments generally consisted of fine-grained, plastic, organic clay with elevated concentrations of arsenic and metals. Beneath these fine-grained sediments were coarser-grained sand, gravel and cobbles. Based on the analytical results, it was determined that slag, remaining fine-grained sediment, and 3.5 to 4 feet of the underlying coarse-grained sediment would be removed from the former pond area. Excavation was conducted in accordance with the work plan submitted to EPA on October 22, 1991 (see Remedial Action Report, Hydrometrics 1992) and under oversight provided by EPA. Approximately 185 cubic yards of slag were excavated and placed on the smelter slag pile. An additional 407 cubic yards of fine-grained sediment and alluvium were excavated and stockpiled in the Lower Ore Storage Area and subsequently smelted. The excavation area is shown on Figure 4-1-3 and Exhibit 4-1-1.

In December 1991, four soil samples (TL-001 through TL-004) were collected from the bottom of the completed excavation. Five additional samples were collected in one-foot intervals vertically at a single location along the north wall of the excavation (TL-005 through TL-009). These soil samples were submitted for analysis of total arsenic and selected metals, EP Toxicity testing, and synthetic precipitation leaching procedure testing (SPLP). Laboratory results (see Table 4-1-5) indicate arsenic and lead concentrations for all

007\0867\065\0127\HEL\011299\I:\STORAGE\86799a14.dwg

post-excavation samples were below EP Toxicity limits with the exception of one sample (TL-002) which exceeded EP toxicity limits for cadmium. Remedial activities for Thornock Lake are described in additional detail in Hydrometrics May 1992 report, titled "Excavation of Bottom Sediments from Former Thornock Lake."

Speiss Pond and Speiss Pit Area

The speiss settling pond (the "Speiss Pond") and speiss granulating pit (the "Speiss Pit") were formerly located immediately to the north of the dross plant. Until 1991, the Speiss Pond and Speiss Pit were used to store water for use in the speiss granulation process. Speiss, a molten copper bearing material, was granulated by spraying it with water in the Speiss Pit. The water then drained to the Speiss Pond to be recirculated during the next granulating cycle. In 1991, Asarco switched to an air granulation process, which used only a light water mist, thus eliminating the need for a speiss process water circuit.

The Speiss Pond and Speiss Pit were identified early in the RI/FS process as potential sources of process water seepage to groundwater. Remediation of the Speiss Pond and Speiss Pit area was initiated in 1988 with the HDPE lining of the Speiss Pond. Later in 1988, a portion of the original Speiss Pond was removed and replaced with a tank (the "Speiss Tank") with leak detection and secondary containment. Soils were also excavated in the surrounding area as part of grading and storm water improvements. A total of 2500 cubic yards of soil were excavated during this phase of remediation. During these initial speiss pond excavation activities, oversite was provided by EPA. The remaining portion of the Speiss Pond was removed in 1992 in accordance with the Process Pond ROD, and the Final Design Report for Sediment and Soil Excavation and Smelting (Hydrometrics 1991b). During excavation in 1992, an additional 235 cubic yards of soil were removed as EPA provided oversight (Hydrometrics 1992b). Soil was excavated to a depth of approximately 20 feet beneath the original Speiss Pond structure. Excavated Soils were subsequently stored in the Lower Ore Storage area (see Section 4.1.3 below).

The Speiss Pit was removed and replaced with a new pit in 1995 during construction of the new dross-reverberatory building. In accordance with the Process Pond ROD, and the Final Design Report for Sediment and Soil Excavation and Smelting (Hydrometrics 1991b), a total of 250 cubic yards of soil were removed to a depth of 17 feet beneath the original Speiss Pit. During excavation of the speiss pit in 1995, oversight was provided by EPA. Subsequent to excavation, the soils were stored in the Lower Ore Storage Area (see Section 4.1.3 below). The depth and lateral extent of soil excavation in the Speiss Pond and Speiss Pit area are shown in Figure 4-1-4 and Exhibit 4-1-1.

No soil sample results were recorded for the Speiss Pond demolition phase since remediation objectives were depth-based, but pre-excavation soil samples were collected at soil borings and monitoring wells and show the general distribution of metals in subsurface soils. Soils data are available from two monitoring wells (DH-21 and DH-28) and nine soil borings (SS-1 through SS-9). Two post excavation samples (SPIT-01 and SPIT-02) were also collected at the former Speiss Pit. Soil sample locations in the Speiss Pond and Speiss Pit area are shown in Figure 4-1-4. Soils from the monitoring well DH-21 and from the Speiss Pit excavation were analyzed for total arsenic and EP Toxicity testing was also conducted on soils from DH-21 and from the nine borings in the Speiss Pond area. Pre and post-excavation soils data are summarized in Table 4-1-6. Sequential extraction analyses were also run on soils from monitoring well DH-21, adjacent to the Speiss Pond excavation. The data are included in Appendix 3-1-3.

Acid Plant Water Treatment Facility

Prior to 1992, suspended sediments from the acid scrubbing process were settled in a concrete lined settling pond and in-line settling tubs (dumpsters), and neutralized by lime application at the former acid reclaim facility. This system was identified in the RI as a source of process water seepage to groundwater. A new Acid Plant Water Reclaim Facility was completed in November 1992 and the original settling pond was subsequently demolished beginning in February 1993.

TABLE 4-1-6: SPEISS POND AND SPEISS PIT SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM & LEAD

Arsenic		-		E	P Toxicity A	s (mg/L)						Total As	(mg/Kg)	
DATE	7/25/89	7/25/89	7/25/89	7/26/89	7/26/89	7/28/89	7/28/89	7/28/89	7/28/89	4/23/87	4/23/87	12/11/87	7/24/95	7/24/95
DEPTH\SITE	SP-SS-1	SP-SS-2	SP-SS-3	SP-SS-4	SP-SS-5	SP-SS-6	SP-SS-7	SP-SS-8	SP-SS-9	DH-21	DH-21	DH-28	SPIT-01	SPIT-02
surface				****					****	****		****	****	
0-2 ft.	1.5	0.55	7.5	4.6	1	0.97	< 0.2	0.49	0.82	1.5	1750			
1-3 ft.												749		
2-4 ft.	0.21	0.71	6.4	2.4	< 0.2	0.23	0.27	0.2	1	0.91	198	983		****
4-6 ft.	< 0.2	2.7	4.9	4.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2		325	79	****	
6-8 ft.	0.24	0.56	0.39	4.5	< 0.2	< 0.2	< 0.2	0.2	3.4	0.025	36	****		
8-10 ft.	2.3	< 0.2	0.93	< 0.2	0.69	< 0.2	0.23	< 0.2	2.9					
10-12 ft.	0.67	0.26	0.28	1.6	0.38	< 0.2	< 0.2	< 0.2	0.45	0.011	34		****	
12-14 ft.	2.3	1.1	0.51	0.57	0.29	< 0.2	0.91	< 0.2	0.23			****	****	
14-16 ft.	3.6	0.31	0.23	1.3	0.26	< 0.2	< 0.2	< 0.2	4.9		43	204		
16-18 ft.	< 0.2	0.27	< 0.2	0.64	0.25	< 0.2	< 0.2	< 0.2	5.8		****			
18-20 ft.	****	0.96	< 0.2	1.7		< 0.2	0.63		2.4					****
20-21 ft.											375		723	1425
24-26 ft.	****	****	****				****	****			550	285		
30-31 ft.	****			****		****					250	545		
36-38 ft.					****	****						32		
			Glasser and Grant											
Cadmium				F	P Toxicity C	d (mg/L)						Total Cd	(mg/Kg)	
DEPTH\SITE	SP-SS-1	SP-SS-2	SP-SS-3	SP-SS-4	SP-SS-5	SP-SS-6	SP-SS-7	SP-SS-8	SP-SS-9	DH-21	DH-21		SPIT-01	SPIT-02
surface			****		0. 00 5							200		
0-2 ft.	0.21	0.1	1.1	0.09	1.6	0.07	1.5	2.5	1.3	0.88	90			
1-3 ft.					1.0	0.07			****	0.00		306		
2-4 ft.	< 0.05	< 0.05	0.55	0.35	2.2	0.06	1.9	2	0.22	0.16	5.5	200	****	
4-6 ft.	< 0.05	0.22	0.41	< 0.05	0.1	< 0.05	< 0.05	0.38	< 0.05	0.10	4.5	1.1		
6-8 ft.	< 0.05	0.07	< 0.05	0.06	0.08	< 0.05	< 0.05	0.1	< 0.05	0.003	6			
8-10 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.002				
10-12 ft.	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.001	< 0.5			
12-14 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				****	****
14-16 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	****	< 0.5	1.2		
16-18 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08		40.0	1.6		
18-20 ft.		< 0.05	< 0.05	< 0.05	40.00	< 0.05	< 0.05		< 0.05					
20-21 ft.			40.00		-						1.5		<10	
24-26 ft.				****	****	****					1	27		4000
30-31 ft.		****								****	4.5	352	****	
36-38 ft.											1.2	9.8		
20 30 11												7.0		
Lead				¥	P Toxicity P	h (ma/L)				-		Total Ph	(mg/Kg)	
DEPTH\SITE	SP-SS-1	SP-SS-2	SP-SS-3	SP-SS-4	SP-SS-5	SP-SS-6	SP-SS-7	SP-SS-8	SP-SS-9	DH-21	DH-21		SPIT-01	SPIT-02
surface					02-00-5	31 -55-0			D1 00 7			211-20		200
0-2 ft.	0.15	0.74	5.4	0.3	25	0.3	18	58	7.1	29	5500			
1-3 ft.	0.15	0.74	3.4	0.5	43	0.3	10				3300	2600		
2-4 ft.	<0.1	0.19	3.1	0.79	16	0.84	17	33	2.1	1.4	170	8535		
4-6 ft.	<0.1	2.1	2.9	<0.1	0.18	<0.1	0.23	3.1	<0.1	1.4	185	22		
6-8 ft.	<0.1	0.28	0.54	<0.1	0.16	<0.1	<0.1	0.41	<0.1	< 0.013	21			
8-10 ft.	<0.1	0.12	1.8	<0.1	< 0.1	<0.1	<0.1	0.14	<0.1	<0.015				
10-12 ft.	<0.1	<0.12	0.56	<0.1	<0.1	<0.1	<0.1	<0.14	<0.1	< 0.013	11			
12-14 ft.	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.015	11			
14-16 ft.	<0.1	<0.1	0.12	<0.1	<0.11	<0.1	<0.1	<0.1	<0.1		12	20		
16-18 ft.		<0.1									1000			
18-20 ft.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
20-21 ft.		<.0.1	<0.1	<0.1	****	<0.1	<0.1				38	****	919	4520
24-26 ft.											5543	24		
				****				****	****	****	14	24		
30-31 ft.				****	****		****			****	94	18		
36-38 ft.		49.69									****	28		

Notes: EPToxicity Limits: As=5 mg/L, Cd = 0.5 mg/L, Pb = 5 mg/L

In accordance with the Process Pond ROD and the Final Design Report for Sediment and Soil Excavation and Smelting (Hydrometrics 1991b), soil was excavated to a maximum depth of approximately 20 feet at the settling pond (Hydrometrics 1992b). Because the soils were partially cemented or indurated beneath the settling pond, the excavation could be advanced 8 to 11 feet below the water table. A total of 2200 cubic yards of soil was excavated from beneath the settling pond. Soils were also excavated and sampled in the area north of the settling pond during construction of the HDS Water Treatment Facility. Figure 4-1-5 shows the limits and depth of excavations in the vicinity of the acid plant treatment facility. Excavated soils were subsequently stored in the Lower Ore Storage Area (see Section 4.1.3, below).

One pre-excavation soil sample was taken on April 1, 1993 following removal of the settling pond's concrete walls and floor (ASEX-SW-1). Excavation of soils underlying the former pond was completed on April 28, 1993. One post-excavation soil sample was taken from the settling pond excavated soil pile (AS\S\1EXC) and two samples were collected from the base of the excavation at the HDS building site (ASEX-HDS-1 and HDS-2). Soil sample locations are shown in Figure 4-1-5. These soils were analyzed for total arsenic and selected metals, and EP Toxicity.

Pre- and post-excavation sample results are summarized in Table 4-1-7. Soils data were also collected at monitoring well DH-19 immediately downgradient of the settling pond. The soil samples from DH-19 were analyzed for total arsenic and metals. Sequential extraction analyses were also run on selected samples. These data are included in the soil quality data base in Appendix 3-1-3.

Acid Plant Sediment Drying Areas

From 1977 through 1991, sludge from the Acid Plant Water Treatment Facility was stored on the Acid Plant Sediment Drying (APSD) Pad between Upper Lake and Lower Lake. In July

TABLE 4-1-7: ACID PLANT WATER TREATMENT FACILITY SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM & LEAD

Arsenic	TCLP As (mg/L)	EP TOX As (mg/L)		Т	otal As (mg/Kg)		
DATE	5/17/93	4/22/87	4/22/87	4/8/93	4/8/93	4/1/93	5/17/93
DEPTH \ SITE	AS\S\IEXC	DH-19	DH-19	ASEX-HDS-1	ASEX-HDS-2	ASEX-SW-1	AS\\$\IEXC
surface		****			****		***
0-2 ft.		0.22	2400				***
2-4 ft.		0.68	950			****	
4-6 ft.		0.29	650	9591	53		
6-8 ft.		3.5	11100			2346	
8-10 ft.		12000	12000	****			
10-12 ft.		10	2750	****			
14-16 ft.		5.1	850	****			
20-22 ft.	0.33		225				854
24-26 ft.		0.06	175			****	

admium	TCLP Cd (mg/L)	EP TOX Cd (mg/L)		T	otal Cd (mg/Kg)		
TH\SITE	AS\S\IEXC	DH-19	DH-19	ASEX-HDS-1	ASEX-HDS-2	ASEX-SW-1	AS\S\IEXC
surface	****					****	-
0-2 ft.		10	480	****			
2-4 ft.		6	285				
4-6 ft.		2.7	50	305	7		
6-8 ft.		2	690			138	
8-10 ft.		425	425				
0-12 ft.		1.2	180				
4-16 ft.		0.37	140	****			
0-22 ft.	6.3	230	230	****			88
4-26 ft.		1	120	****			

		otal Pb (mg/Kg)	T		EP TOX Pb (mg/L)	TCLP Pb (mg/L)	Lead
AS\\$\IEXC	ASEX-SW-1	ASEX-HDS-2	ASEX-HDS-1	DH-19	DH-19	AS\S\IEXC	DEPTH \ SITE
							surface
			****	14250	49		0-2 ft.
		****		12000	39		2-4 ft.
	****	455	13347	600	0.22		4-6 ft.
	3741			2600	0.088		6-8 ft.
			****	800	800		8-10 ft.
			****	135	0.013		10-12 ft.
				155	0.013		14-16 ft.
4432	****			115	115	8.4	20-22 ft.
		****		34	0.0065		24-26 ft.

Notes:

EP Toxicity Characteristic Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L

Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L

of 1991, the use of Acid Plant sludge was permanently discontinued. The dried Acid Plant sludge was subsequently smelted.

Subsurface soils data have been collected from the following sites in the Acid Plant Sediment

Drying area adjacent to Lower Lake:

- Monitoring well (DH-29) was drilled on the northwest side of the pad during RI
 activities. Soil samples were collected to a depth of 19 feet and analyzed for total
 arsenic and metals.
- In August of 1991, four post-RI monitoring wells (ASPD-1 through ASPD-4) were installed at sites in and adjacent to the former sediment drying area (see Exhibit 4-1-1). Drill hole soil samples were taken at two-foot intervals and analyzed for arsenic and metals using the EP Toxicity test procedure.
- In response to an EPA informational request (See Appendix 3-1-1), additional borehole samples (1-7 ft. composites) were taken at nine (9) sites in the sediment drying pad area (APSD-P1 through P4, P6, P8 and P9) in August and September of 1996. These samples were analyzed for total arsenic and metals, TCLP and synthetic precipitation leaching procedure tests (SPLP).

Table 4-1-8 summarizes subsurface soil data for the APSD Pad.

A second smaller sediment drying pad (0.04 acres) was located nearer to the former acid plant water treatment facility (Figure 4-1-6). APSD-13 and APSD-14 were installed nearby to evaluate soil quality. Soil samples were collected at 2 ft intervals to depths of 23 feet at APSD-13 and 16 feet at APSD-14. Soils were analyzed for total and TCLP arsenic and metals. Analytical results are summarized in Table 4-1-8. In accordance with the Process Pond ROD and the Final Design Report for Sediment and Soil Excavation and Smelting (Hydrometrics 1991 b) sediments from the small sediment drying area adjacent to the former acid plant water treatment facility (see Figure 4-1-6) were excavated. The sediments were subsequently transported to the Lower Ore Storage area for storage (see Figure 4-1-7).

Arxenie		EP TOX As (mg/L.)	(mg/L)				T	TCLP As (mg/L.)								Total As (mg/Kg)	0		
DATE	SCORES.	8/20/41	821/91	821.91	MANNE	8/1696	801896	BUTON	871696	9/20/96	95056	12/11/67	803636	801696	81698	8/16/96	8716/96	9120348	W3DW
DEPTH VSTE	1080	1030.2	APSD-3	F-05/FY		APSD-72	APSD-P3	Wash	APSD-75	APSD-P8	4PS0.P9	08.39	APSD-PT	AP50-P2	APSD-P3	APSD-P4	APSD-3%	APSD-48	01:050Y
0-2.0	0.02	2.5	2.8	0.11		3.5	10	0.27	22.0	5.2	17.0	1,335	310	1600	360	3100	2910	2874	5813
1.2 11	0.14		1	-	_	-	-	-	_	-	-	1	-	-	-	_	_	-	_
2-3 F	1	1	*****									-							
2-4 ft.	0.18	0.13	5.5	7.3								620							
3.5 ft.	-	-	1	-	-							-							
4-6 ft.	0.03	H010	5.6	4.6	-	-	+	*	+	*	*	2,225	-	+	+	+	+	*	-
6-8 B.	100	0.00	****	2.6		Compresite	Samples from 0 to 7 feet	O to T feet				305		Compression	Composite Samples from 0 to 7 feet	10 to 7 feet			
8-10 ft.	0.33	<0.002	0.52	1.8	1	*****		1				335	i	1	-		-	1	1000
9-10 ft.	1	i	1	-	****			-	1	1	-				1	-	1		
TO-III B.	0.0	<0.002	0.45	11,08	-	*****	****	1	-	-	-	342	****	-		1	-	-	4141
11-12 6		<0.00	-		-	1	1	1	*****	1			1	***		-	1	****	1
10.14 0	COPPE	0) (1)	1000	000	-	-		1	-	1	1000	-		1	1	****		1	-
14.14.0	- anview	0.41		1000			-	-	1	I	-	-	i	1		1			
14-10 H.		1970									-	-	1	-	-	-	1	-	-
10-18 m.	****	970	1	-	-							82	1	1	-	1		****	
17-19.0.	1000	1111	-																
Cadminm		EP TOX Cd (mg/L)	(mg/L)						-		total contract	on you	4000 60	4 1001 (03	Apen pa	APIDIA PA	APS0.P6	APSD-P8	ordstv
DIEPTH \ SITIE	V-GS-V	APSD-2	APSD-3	APSD-4	APSD-PT	APSD-P2	APSD-P3	APSDAY	APSD-P6	APSD-78	APSDAS	DM-29	APANAPA	A730.72	Arabete	2000	400	214	6613
0-2 n.	13	4.8	3.7	2.6	-	-		1	1	15.0	200	140	CI00	420	<100	000	-		9,00
1-2.ft.	0.25	1	1	-	****		1	-	*****			ī							
2-3 ft.			****	*****	-	1	1	-				1							
2-4 ft.	0.15	0,11	7	1.5	1	1	-		-			119							
3-5 n.	1	****	1			****	-	1	1			-							
4-6 n.	0.003	0.07	8.6	0.1	****	-		-	-	+	+	130	*	+	+	+	+	*	-
6-8 R.	10,05	50.0	1001	1000	1	1		****	-			SK		Composite	e Samples from 0 to 7 feet	n O to 7 feet			
8-10 ft.	1000	0.094	8.0	0,011	-	-			-		-	190	****	-	1	1	1		-
9-10 R.	1	1	1	1	****	1	-	*****	1	1	****	-	-	1	1	1	1	-	1
WELL B.	land	900	0.28	1000>	-	1	-	1	1	-	-	27	-		1		1		
11-12 ft.	****	6000	-	-	****		1	-	- mir		****	*****			1	1	1		
12-14 ft.	<0.00	0.12	1	40.00	1	1		1	-	-	1	1	-					1	
14-16 ft.	1	90'0	1	-	1	2000	1	1	1	-	-	-	1	****	-		-	l	
16-18 ft.	1	183	-		-	****	1	1	1	1			1	1	Acces	1		-	
17-19 ft.		-		-	*****	*****		****			2000	27		****	Parties.	-	****	-	
Lead		EP TOX Pb (mg/L)	(mg/L)														100	1000	4600.00
DEPTH (S/T/E	L-WWL	APSD-2	APSD-3	F-05/dV	14505-63	APSD-P2	APS0-P3	APSD-PV	APSD-36	APSD-PK	APSD-P9	DH-29	AP50 P1	APSD-P2	APSD-P3	APSD-PA	W.C.C.V	APAD FA	1000
0.2 ft.	50	E	0.012	2.5	1	1	1		1	5.2	900	26800	4900	48IK)	3100	9119	11100	6867	Tally .
1-2 ft.	600	1	-		-	*****	1	-	-			-							
2-3 ft.	1		-	-	-	1	-	-											
2.4 ft.	991)	0.1	<0.112	0.04		1	-	*****	1			2205							
3-5 ft.	1	I	1		-	1	***	-	***								-	-	-,
4-6 ft.	0.1	0003	<0.02	<0.002	1	-		-	1	-	•	1038	+	-	* *	will no T food	-		
6-8 ft.	9000	0.07	1	<0.002	****	1	1		-			10,00		Company	as assurance as			-	-
8-10 ft.	800	t00)	0.03	<0.002	1	*****		-	1	****	-	3070	-	******					-
9-10 ft.	1		-	-	-	-	-	-	1			-	-	1				-	-
10-11 ft.	0.03	0.03	0.02	<0.002	1	1	****	1			-	9523	-	1					
11-12 ft.	1	90'0	1	1	-	-		1		1	-	-		i	1			-	-
12-14 ft.	0.02	0.14	-	ott02	-	1	1	-		-	1	1	*****		-	1			-
14-16 ft.		0.33		1	-	1	*****	1	1		-	-	1	1			1	1	
16-18 ft.	-	DAT.	-	1	-	-	****	-	-	-	1	1 1	1					-	-
17-19 ft.	1000	1			2000	****	*****	****	****	*****	****	48.5	****	****		-	-		

Notes: EP Trackisty Characteristic Limites: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L. Trackisty Characteristic Leaching Procedure (TCLP) Regulatory Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L.

Former Upper Ore Storage Area between Upper Lake and Lower Lake

The area between Upper and Lower Lake formerly contained stockpiles of ore and fluxes, as well as soil piles and construction debris from historical plant site activities. Storage of ore in this area was discontinued in 1989 and remaining ore materials were removed (see Figure 4-1-7).

Soil quality data were collected between Upper and Lower Lake as part of several investigations.

- Eight exploratory test pits (LLB-1 through LLB-8) were excavated and sampled in 1990. Soil samples were collected from the test pits at depths of 1 to 2 feet, 2 to 3 feet, 3 to 5 feet and 9 to 10 feet. These samples were analyzed for total and TCLP metals. The test pits were exploratory in nature and were not conducted as part of the RD/RA program.
- Soil samples were also collected between Upper and Lower Lake in October 1993
 during installation of monitoring wells APSD-9 through APSD-12. Soil samples
 were collected at two-foot intervals to depths of 14 to 16 feet and analyzed for total
 arsenic and metals.

Sample locations are shown in Figure 4-1-6. The test pit and APSD drilling and analytical results were presented and discussed in the March 1994 Pre-Final (90%) Design Report for Lower Lake and are summarized in Table 4-1-8.

The soils data from APSD 9 through 12 show soil arsenic concentrations ranging from 58 mg/kg to 2,525 mg/kg in the soil pile areas between Upper and Lower Lakes with the highest concentrations present at DH-9 and DH-10 at depths of 8 to 10 feet. Similar or higher concentration ranges were reported at shallow depths in test pits LLB-1 through LLB-8. Cadmium concentrations ranged from 1 to 396 mg/kg in the APDS wells and lead ranges from 366 to 28,651 mg/kg. All eight of the LLB test pit locations had samples failing TCLP for 1 or more parameters (see results in Table 4-1-9).

TABLE 4-1-9: UPPER AND LOWER LAKE AREA SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM & LEAD

Total As (mg/kg)					AP	APSD SITES												TIT	I I R SITES								
Figure 1979	Arsenic	EP Tox As	(mg/L)				Total As	(mg/Kg)				Arrenic			T	T.P. As (m.	off.)	The state of the s	- CALLES	-			Total As	(market)			
Mail	DATE	8/21/91	8/21/91	10/20/93	10/20/93	10/20/93	10/20/93	10/20/93	10/20/93	10/25/93	10/20/93	DATE				VII 06/D	1	1	90 11/2/	0 11/2/90			110,40	11/2/00	110,40	11/2/90	11,57/00
State Color Colo	DEPTH \ S/7/E	APSD-5	APSD-6	APSD-7	APSD-8	APSD-9	APSD-10	N-GSAV	APSD-12	APSD-13	APSD-14	DEPTH \ STTE	1			184 1		1				118.3		II.B.S		1	118.8
Column C	0.2 ft.	0.15	0.34	1256	800	543	1299	850	881	7433	4000	0.2 ft.	1				1			1	1		1	1	1800	1800	13000
Column C	2-4 ft.	0.18	0.07	293	***	851	895	1266	738	7443	3379	2.3 ft.	99'0	0.85	1.3	290	0.43								0000	1600	OUT.
Column C	4-6 ft.	0.21	00'0	202	352	1691	168	18	191	7551	15778	358	0.21	0.54	0.27	0.61							-		8,000	-	-
Column C	6-8 ft.	80'0	0.14	378	1	1754	1954	217	99	5952	0310	9-10 ft.	2.2	0.37		9									2200		
Column C	8-10 ft.	0.12	0.11	****	320	2391	2525	130	-	5167	10686		1			100				1			1000				1
Continue	10-12 ft.	0.02	0.02	****	326	1461	1262	112	976	4747																	
Column C	10-16 R.	1	-	443	1					1000																	
Column C	17,14 0	000	0.00		-		****																				
Column C		OWN	rom.	1	943	340	1184	39	8	7194	13842																
Part	14-16 ft.	0.03	1	1	33	471	462	-	1	2724	1232																
Part	10-18 ft.	1	-	1	1	-	1	-	1	2324	T																
Part	18-20 ft.	1	I	****	1	1	1	1	-	1233	T																
Part	19-21 ft.	-	1	1	1	1	-	1	1	1760																	
Part	21-23 ft.	-	1	1	1	-	1	1	-	946																	
Marcol M	Cadmium	EP Tox Cd	me/L)				Traini Cat	(modified				2000		-	1			I	1	1	1						ı
Color Colo	DEPTH \ SYTE	APSD-5	APSD-6	APKD.7	ADON. 9	a nem o	4850 20	10000	******	10000	1000	Commune	-	- 1		LP Cd (n		- 1	- 8		- 1		Total Cd	(mg/L)			
Color Colo	0.2 ft	91.0	4.2	215	211	200	Street Pu	T. Color	Arabella	Arabeta	AF30-14	DEFINITE		-1	-	미	-1		- 1	4	3	118-3	7	2.977	9-877	1787	2.6.3.7
Color Colo	17.0	010	2.5	330	9	113	125	244	158	111	1	0-2 ft.	13	6.0	126		0.33							01>	290	380	3000
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	77417	0.12	0.22	132	-	88	230	329	396	. 102	66	2.3 ft.	0.3	3.3	7.7	2	12						250	900	830	059	780
Column C	4-6 ft.	0.37	0.95	20	61	69	187	6	69	130	349	3-5 ft.	0.32	m	3.7	12	-						4100	1	300	-	
0.22 1.9	6-8 ft.	0.13	2.6	949	1	33	288	37	75	127	485	9-10 ft.	0.35	0.15	1	2	-			10			90				
1	8-10 ft.	0.22	1.9	1	32	42	230	24	-	102	489												-				
Column C	10-12 ft.	0.17	0.97	1	91	34	110	11	24	100																	
1	10-16 ft.	1	1	47	1	-	-	-	1	1	1																
Column C	12-14 ft.	0.2	0.13	-	-	23	69	9	-	113	808																
Column C	14-16 ft.	0.28	-	1	2	21	33	I	1	101	896																
EFTor Pt. fmgL,	16-18 ft.	1	-	1	-	****	1	1	*****	171	I																
SPT Fox bit mpt Late Part Part Part Part Part Part Part Part	18-20 ft.	-	1	****	1	1	-	1	1	166	1																
March No. Marc	19-21 ft.	1	1	1	1	1	1	-	1	176	4100																
March Marc	21-23 ft.	-		-	-	-	-	*****	-	2903			To the second														
APSD-5 APSD-6 APSD-11 APSD-12 APSD-13 APSD-13 APSD-14 APSD-13 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-13 APSD-14 APSD-14 APSD-13 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-15 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-17 APSD-16	Lead	EP Tox Pb (t	mg/L)				Total Pb (mg/Kg)				Lead			TC	LP Pb (m)	AL)			L			Total Ph	(mad)			1
1,8 45 34521 10071 6875 20607 11895 11315 255 0.27h. 3.3 0.68 1.2 184 2.2 51 176 51 2400 4600 7700 11000 4600 7700 11000 4600 7700 11000 4600 7700 11000 4600 77	DEPTH \ SITE	APSD-5	APSD-6	APSD-7	APSD-8	APSD-9	APSD-10	APSD-11	APSD-12	APSD-13	APSD-14	DEPTH\SyrE				11 18						118.3	1184	TIRE	110.6	110.9	4.0.7
0.05 4.9 4433 — 6436 28431 17064 9006 149 197730 2.3 ft. 2.3 ft. 2.1 12 35 100 161 240 88 11 179 170	0-2 ft.	1.8	45	34521	10001	6875	20507	11895	11315	256	2000	0.2 ft.		l.,	1		1	1		1	1	2300	0,0011	460	15000	19000	11000
1.5 10.6 12.21 748 8878 21943 4.39 1213 197 16794 3.5.ft. 2.1 12 133 5.3 1.90	2.4 ft.	0.85	4.9	4433	1	9699	259431	17064	0906	691	197730	2-3 ft.	14	36	100		240					16000	13000	2000	45000	0009	SAMO
0.12 26 2150 — 6882 23651 1736 406 90 7103 9-104. 43 0.62 — 45 — — 620 550 — 7900 — 225 133 — 1400 7907 24971 961 — 81 12999 — 81 12999 — 45 — — 620 550 — 7900 — 7900 — 1714 — 615 7005 7107 430 542 — 77 — 615 7005 7107 430 542 — 7900 — 7900 — 1714 — 615 7005 7107 430 542 — 7900 — 7	4-6 ft.	1.9	10.6	2921	748	8878	21943	439	1213	161	16794	3-5 ft.	2.1	12	153							0096	41000		15000		-
2.5 13.3 — 1405 7807 24971 961 — \$1 122959 0.26 5.1 — 615 7003 7107 430 542 77 — 0.59 0.59 — 615 7003 7107 430 528 77 — 1 — 223 361 4997 258 366 197 16430 — — — — — 298 238 — — — — — 298 238 — — — — — — 47 — — — — — — — 298 238 — — — — — — — 47 — — — — — — — — 47 —	6-8 ft.	0.12	26	2150	1	6862	28651	1736	406	96	7103	9-10 ft.	4.8	0.62	1	45	1			009		-	7900		2000		
0.26 5.1 — 615 7005 7107 430 542 77 77 615 615 7005 7107 430 542 77 77 615 615 7005 7107 430 542 77 77 71 71 71 71 71 71 71 71 71 71 71	8-10 ft.	25	13.3	1	1405	7907	24971	196	1	100	12959												2000				
1714	10-12 ft.	0.26	5.1	1	615	7005	7107	430	542	77	-																
0.59	10-16 ft.	1	-	1714	1	1	1	-	****	1	1																
1	12-14 ft.	0.59	0.59	1	223	3613	4097	258	366	197	16430																
	14-16 ft.		1	-	187	2526	9661	1	1	295	538																
	16-18 ft.	1	-	1	***	1	1	1	1	298	-																
	18-20 ft.	1	-	1	-	1	1	1	1	8063	1																
	19-21 ft.	1	-	1	1	1	-	-	-	47	1																
	21-23 ft.		-		*****	1	1	1	-	15																	

Notes: EP Toxicity Characteristic Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L.

Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L.

1.1.34.1.3 Stockpiles

There are four stockpiles areas on the plant site (Figure 4-1-7) consisting of the following:

- 1. Soil stockpiles between Upper Lake and Lower Lake (estimated 17,000 cubic yards);
- 2. The Shew Ridge soil stockpile along the western boundary of the lower ore storage yard (volume unknown);
- 3. The Lower Lake sediment stockpile in the lower ore storage area (27,000 cubic yards); and
- 4. The lower ore storage area stockpiles (24,000 cubic yards).

Asarco has proposed constructing an on-site containment facility, which would serve as a remedial action measure for a large portion of these soils. A Corrective Action Management Unit (CAMU) Draft Design Report (Hydrometrics, 1997b) describing this proposal has been submitted to EPA for review and comment.

Stockpiles between Upper and Lower Lake

The area between Upper and Lower Lake formerly served as the Upper Ore Storage Area and contained stockpiles of ore and fluxes, as well as soil piles and construction debris from historical plant site activities. Storage of ore in this area was discontinued in 1989 and remaining ore materials were removed. However, piles of soil and construction debris remain.

Soil samples were collected from existing stockpiles in 1994 as part of the preliminary design analysis for the CAMU and analyzed for total arsenic and lead. The sample results are shown on Exhibit 4-1-4. Thirty eight separate samples were collected from soil stockpiles in area between Upper Lake and Lower Lake (see sample results on Exhibit 4-1-4 for Pile#101

through Pile#115). The sampling results indicate arsenic is present in soil stockpiles at concentrations ranging from 228 to 14,290 mg/kg and lead at concentrations ranging from 3,004 to 46,341 mg/kg. Asarco has included removal of all of the soil stockpiles from this area as part of a CAMU proposal (see Section 5).

<THE FOLLOWING DISCUSSION OF SUBSURFACE SOIL QUALITY DATA HAS</p>
BEEN MOVED TO SECTION 4-1-4>

Soil quality data were collected between Upper and Lower Lake as part of several investigations.

- Eight exploratory test pits were excavated and sampled in 1990. Soil samples were collected from the test pits at depths of 1 to 2 feet, 2 to 3 feet and 3 to 5 feet and analyzed for total and TCLP metals. The test pits were exploratory in nature and were not conducted as part of the RD/RA program.
- Four boreholes (APSD 1 through 4) were completed in the former acid plant sediment drying area adjacent to Lower Lake and two boreholes (APSD 5 and APSD 6) were drilled in the area between Upper and Lower Lakes in 1991. Soil samples were collected at 2 foot intervals to depths of 14 to 17 feet. The samples were analyzed for EP Toxicity.
- Soil samples were also collected between Upper and Lower Lake in October 1993 during installation of monitoring wells APSD-9 through APSD-12. Soil samples
- were collected at two-foot intervals to depths of 14 to 16 feet and analyzed for arsenic and metals by XRF.

Sample locations are shown in Figure 4-1-3. The test pit and APSD drilling and analytical results were presented and discussed in the Pre-Final (90%) Lower Lake Remediation Project

FIGURE 4-1-3. SOIL BORING, MONITORING WELL BORING AND TEST PIT LOCATIONS IN THE UPPER.LOWER LAKE AREA (K:\DATA\PROJECT\0867\ULLOCAT.CDR)

Report in March 1994 (Hydrometrics, 1994b). The analytical results are in the CC/RA soil data base in Appendix 3-1-2, and soil boring and monitoring well logs are in Appendix 4-4-1.

The soils data from APSD 9 through 12 show soil arsenic concentrations ranging from 58 mg/kg to 2,525 mg/kg in the soil pile areas between Upper and Lower Lakes with the highest concentrations present at DH-9 and DH-10 at depths of 8 to 10 feet. Similar or higher concentration ranges were reported at shallow depths in test pits LLB-1 through LLB-8. Cadmium concentrations ranged from 1 to 396 mg/kg in the APDS wells and lead ranges from 366 to 28,651 mg/kg. All eight of the LLB test pit locations had samples failing TCLP for 1 or more parameters (see results in Appendix 3-1-2).

A Supplemental Environmental Investigation (SEP) for the area between Upper and Lower Lakes is in progress and specifies removal of contaminated stockpile soils from this area. A remedial action plan addressing soil removal in this area has not been completed. However, Asarco has included removal of soil stockpiles from this area in the CAMU proposal (see Section 5).

Shew Ridge, Lower Lake Sediment and Lower Ore Storage Stockpiles

In 1989, a new concentrate storage and handling building (CSHB) was constructed as part of the ROD requirements to contain ore stockpiles stored outdoors in the ore storage yard. During construction, soils from the building excavation were visually segregated and then later tested by EPTOX. Soils passing EPTOX were placed in the Shew Ridge soil stockpile along the western perimeter of the lower ore storage yard. The remaining soils were placed in a second stockpile in the lower ore storage yard (Figure 4-1-7). The original EPTOX analyses were not located during the file review for this project. Additional sampling is, h:\files\007 asarco\0867\cap{ccra report\r99ccra1.doc\HLN\2/2/07\065\0096}

therefore, included as an identified data need for establishing the final disposition of soils in the Shew Ridge soil stockpile (see Section 5).

In addition to soils excavated during construction of the CSHB, the lower ore storage area also contains soils excavated as a result of lead SIP and CERCLA remedial activities on site. In 1994, there was a total of about 50 separate piles in the lower ore storage area consisting of a variety of materials including excavated soils, concrete rubble, wood, fines, asphalt, and slag and organic matter. Material from those stockpiles was sampled and analyzed by XRF for lead and arsenic. Analytical results are in Appendix 3-1-3 ("pile" series samples) and are summarized on Exhibit 4-1-4. Average concentrations of lead and arsenic were 20,900 ppm and 3250 ppm, respectively. Those materials have since been consolidated into one area of the lower ore storage yard next to the Lower Lake sediments (Figure 4-1-7). Asarco has recommended the 24,000 cubic yards of material in stockpiles in this area be placed in the proposed CAMU.

A Lower Lake sediment stockpile is also in the Lower Ore Storage Area. Sampling and dredging of bottom sediments from Lower Lake was one of the remedial actions specified in EPA's 1989 ROD. The dredged sediments were mechanically dewatered and the filter cake from the dewatering operation was transported to an interim covered stockpile in the Lower Ore Storage Area.

Prior analyses of soil cores from Lower Lake indicate that these sediments would likely fail TCLP (see Appendix 3-1-1, "LLB series data"). Accordingly, the ROD required that the dewatered sediments by stored in the concentrate storage and handling building (CSHB) until they could be smelted. During remedial design, it was discovered that the volume of dried sediments would be too great to store in the CSHB. A Short-Term Storage Plan (Hydrometrics 1997d) was prepared and submitted to EPA. Following EPA review of the Short-Term Storage Plan, a temporary cover for the dewatered sediments was implemented. As a result, the sediments currently reside in a short-term storage facility located in the ore

storage area. The sediments are being stored in a protected environment to prevent contamination of the adjacent area from dispersion of the sediments by wind and water. The sediments are located on a concrete pad to prevent contact with adjacent soils. A containment berm around the perimeter of the sediment pile diverts run-on. A geomembrane cover over the sediments prevents wind and water dispersion and eliminates subsequent generation of leachate.

Approximately 31,000 cubic yards of dewatered sediments were transported to the Lower Ore Storage Area. Four thousand cubic yards of these sediments were smelted prior to the stockpile being covered with a geomembrane liner in October 1997. The sediments will remain in this interim storage facility while EPA considers Asarco's request to modify the sediment smelting requirement of the ROD, and instead dispose of these materials in the onsite CAMU.

4.1.4 Slag

The effect of the slag pile on groundwater and surface water was evaluated as part of the 1990 Comprehensive RI/FS. The evaluation was conducted in accordance with procedures presented in the Comprehensive RI/FS Work Plan (Hydrometrics 1987). Based on the results of the evaluation, the RI/FS concluded that the potential for impacts to groundwater and surface water from slag is low and the subsequent ROD did not specify any remedial action for the Slag Pile Operable Unit. Post-RI/FS monitoring at adjacent surface water and groundwater monitoring sites is on-going. A summary of the slag investigation and the findings of the RI relative to slag are presented below.

4.1.4.1 <u>Investigation of Potential Groundwater Impacts</u>

Slag Infiltration Test Basin Construction, Water Level Measurement, Water Quality Sampling and Analysis

<u>Infiltration and percolation of precipitation into the slag pile were directly measured in slag</u> test basins constructed in fumed and unfumed slag. Fumed slag is a by-product of the zinc

5.2 REMEDIAL ACTION MEASURES

Remedial Action measures are shown in Table 5-2-1. In accordance with the Consent Decree (Paragraphs 27 and 28), the interim and final remedial measures implemented at the East Helena site were evaluated for criteria listed in the consent decree. Table 5-2-1 describes remedial measures for each CC/RA area or operable unit, and provides an evaluation of each action based on the following criteria:

- Interim action objectives,
- Design description,
- Construction description,
- O&M requirements,
- Effectiveness of the action,
- Is the action consistent with long-term measures and
- Potential additional measures.

The evaluation addresses actions implemented as part of the CERCLA program for the site, as well as actions implemented as part of other regulatory programs, and voluntary remedial measures implemented as part of plant site operations. The evaluation also addresses the effectiveness of the action including comparison of remedial events and water quality changes shown in Appendix 4-3-1 and in Figures 5-2-1, 5-2-2, 5-2-3, 5-2-4 and 5-2-5. The figures are water quality trend graphs similar to the plots shown in Appendix 4-3-1, but include remedial actions that are discussed in detail in the interim and final remedial action evaluation in Table 5-2-1.

All of the remediation activities and other events that affect the CC/RA areas and operable units are listed in Exhibit 5-1-1. All of the remedial actions listed on Exhibit 5-1-1 are part of the Evaluation of Interim Remedial Action Measures in Table 5-2-1. As Table 5-2-1 shows, most of the activities evaluated have potential for follow-up actions, however, some of the actions implemented are considered final. Near-final actions include construction of the stormwater containment system, and replacement of Wilson Ditch.

TABLE 4-1-9: UPPER AND LOWER LAKE AREA SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM & LEAD

Total As (mg/kg)					AP	APSD SITES												TIT	I I R SITES								
Figure 1979	Arsenic	EP Tox As	(mg/L)				Total As	(mg/Kg)				Arrenic			T	T.P. As (m.	off.)	The state of the s	- CALLES	-			Total As	(market)			
Mail	DATE	8/21/91	8/21/91	10/20/93	10/20/93	10/20/93	10/20/93	10/20/93	10/20/93	10/25/93	10/20/93	DATE				VII 06/D	1	1	90 11/2/	0 11/2/90			110,40	11/2/00	110,40	11/2/90	11,57/00
State Color Colo	DEPTH \ S/7/E	APSD-5	APSD-6	APSD-7	APSD-8	APSD-9	APSD-10	N-GSAV	APSD-12	APSD-13	APSD-14	DEPTH \ STTE	1			184 1		1				118.3		II.B.S		1	118.8
Column C	0.2 ft.	0.15	0.34	1256	800	543	1299	850	881	7433	4000	0.2 ft.	1				1			1	1		1	1	1800	1800	13000
Column C	2-4 ft.	0.18	0.07	293	***	851	895	1266	738	7443	3379	2.3 ft.	99'0	0.85	1.3	290	0.43								0000	1600	OUT.
Column C	4-6 ft.	0.21	00'0	202	352	1691	168	18	191	7551	15778	358	0.21	0.54	0.27	0.61							-		8,000	-	-
Column C	6-8 ft.	80'0	0.14	378	1	1754	1954	217	99	5952	0310	9-10 ft.	2.2	0.37		9									2200		
Column C	8-10 ft.	0.12	0.11	****	320	2391	2525	130	-	5167	10686		1			100				1			1000				1
Continue	10-12 ft.	0.02	0.02	****	326	1461	1262	112	976	4747																	
Column C	10-16 R.	1	-	443	1					1000																	
Column C	17,14 0	000	0.00		-		****																				
Column C		OWN	rom.	1	943	340	1184	39	8	7194	13842																
Part	14-16 ft.	0.03	1	1	33	471	462	-	1	2724	1232																
Part	10-18 ft.	1	-	1	1	-	1	-	1	2324	T																
Part	18-20 ft.	1	I	****	1	1	1	1	-	1233	T																
Part	19-21 ft.	-	1	1	1	1	-	1	1	1760																	
Part	21-23 ft.	-	1	1	1	-	1	1	-	946																	
Marcol M	Cadmium	EP Tox Cd	me/L)				Traini Cat	(modified				2000		-	1			I	1	1	1						ı
Color Colo	DEPTH \ SYTE	APSD-5	APSD-6	APKD.7	ADON. 9	a nem o	4850 20	10000	******	10000	1000	Commune	-	- 1		LP Cd (n		- 1	- 8		- 1		Total Cd	(mg/L)			
Color Colo	0.2 ft	91.0	4.2	210	211	200	Street Pu	T. Color	Arabella	Arabeta	AF30-14	DEFINITE		-1	-	미	-1		- 1	4	3	118-3	7	2.977	9-877	1787	2.6.3.7
Color Colo	17.0	010	2.5	330	9	113	125	244	158	1111	1	0-2 ft.	13	6.0	126		0.33							01>	290	380	3000
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	77417	0.12	0.22	132	-	88	230	329	396	. 102	66	2.3 ft.	0.3	3.3	7.7	2	12						250	900	830	059	780
Column C	4-6 ft.	0.37	0.95	20	61	69	187	6	69	130	349	3-5 ft.	0.32	m	3.7	12	-						4100	1	300	-	
0.22 1.9	6-8 ft.	0.13	2.6	949	1	33	288	37	75	127	485	9-10 ft.	0.35	0.15	1	2	-			10			90				
1	8-10 ft.	0.22	1.9	1	32	42	230	24	-	102	489												-				
Column C	10-12 ft.	0.17	0.97	1	91	34	110	11	24	100																	
1	10-16 ft.	1	1	47	1	-	-	-	1	1	1																
Column C	12-14 ft.	0.2	0.13	-	-	23	69	9	-	113	808																
Column C	14-16 ft.	0.28	-	1	2	21	33	I	1	101	896																
EFTor Pt. fmgL,	16-18 ft.	1	-	1	-	****	1	1	*****	171	I																
SPT Fox bit mpt Late Part Part Part Part Part Part Part Part	18-20 ft.	-	1	****	1	1	-	1	1	166	1																
March No. Marc	19-21 ft.	1	1	1	1	1	1	-	1	176	4100																
March Marc	21-23 ft.	-		-	-	-	-	*****	-	2903			To the second														
APSD-5 APSD-6 APSD-11 APSD-12 APSD-13 APSD-13 APSD-14 APSD-13 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-13 APSD-14 APSD-14 APSD-13 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-14 APSD-15 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-16 APSD-17 APSD-16	Lead	EP Tox Pb (t	mg/L)				Total Pb (mg/Kg)				Lead			TC	LP Pb (m)	AL)			L			Total Ph	(mad)			1
1,8 45 34521 10071 6875 20607 11895 11315 255 0.27h. 3.3 0.68 1.2 184 2.2 51 176 51 2400 4600 7700 11000 4600 7700 11000 4600 7700 11000 4600 7700 11000 4600 77	DEPTH \ SITE	APSD-5	APSD-6	APSD-7	APSD-8	APSD-9	APSD-10	APSD-11	APSD-12	APSD-13	APSD-14	DEPTH\SyrE				11 18						118.3	1184	TIRE	110.6	110.9	4.0.7
0.05 4.9 4433 — 6436 28431 17064 9006 149 197730 2.3 ft. 2.3 ft. 2.1 12 35 100 161 240 88 11 179 170	0-2 ft.	1.8	45	34521	10001	6875	20507	11895	11315	256	2000	0.2 ft.		l.,	1		1	1		1	1	2300	0,0011	460	15000	19000	11000
1.5 10.6 12.21 748 8878 21943 4.39 1213 197 16794 3.5.ft. 2.1 12 133 5.3 1.90	2.4 ft.	0.85	4.9	4433	1	9699	259431	17064	0906	691	197730	2-3 ft.	14	36	100		240					16000	13000	2000	45000	0009	SAMO
0.12 26 2150 — 6882 23651 1736 406 90 7103 9-104. 43 0.62 — 45 — — 620 550 — 7900 — 225 133 — 1400 7907 24971 961 — 81 12999 — 81 12999 — 45 — — 620 550 — 7900 — 7900 — 1714 — 615 7005 7107 430 542 — 77 — 615 7005 7107 430 542 — 7900 — 7900 — 1714 — 615 7005 7107 430 542 — 7900 — 7	4-6 ft.	1.9	10.6	2921	748	8878	21943	439	1213	161	16794	3-5 ft.	2.1	12	153							0096	41000		15000		
2.5 13.3 — 1405 7807 24971 961 — \$1 122959 0.26 5.1 — 615 7003 7107 430 542 77 — 0.59 0.59 — 615 7003 7107 430 528 77 — 1 — 223 361 4997 258 366 197 16430 — — — — — 298 238 — — — — — 298 238 — — — — — — 47 — — — — — — — 298 238 — — — — — — — 47 — — — — — — — — 47 —	6-8 ft.	0.12	26	2150	1	6862	28651	1736	406	96	7103	9-10 ft.	4.8	0.62	1	45	1			009		-	7900		2000		
0.26 5.1 — 615 7005 7107 430 542 77 77 615 615 7005 7107 430 542 77 77 615 615 7005 7107 430 542 77 77 71 71 71 71 71 71 71 71 71 71 71	8-10 ft.	25	13.3	1	1405	7907	24971	196	1	100	12959												2000				
1714	10-12 ft.	0.26	5.1	1	615	7005	7107	430	542	77	-																
0.59	10-16 ft.	1		1714	1	1	1	-	****	1	1																
1	12-14 ft.	0.59	0.59	1	223	3613	4097	258	366	197	16430																
	14-16 ft.		1	-	187	2526	9661	1	1	295	538																
	16-18 ft.	1	-	1	***	1	1	1	1	298	-																
	18-20 ft.	1	-	1	-	1	1	1	1	8063	1																
	19-21 ft.	1	-	1	1	1	-	-	-	47	1																
	21-23 ft.		-		*****	1	1	1	-	15																	

Notes: EP Toxicity Characteristic Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L.

Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Limits: As 5 mg/L, Cd = 1 mg/L, Pb = 5 mg/L.

TABLE 4-1-5: FORMER THORNOCK LAKE SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM AND LEAD

Sample	Sample	Sample		Total	Total Metals (mg/Kg)	(g)	EP Tc	EP Tox (mg/L)(2)		SPLP	SPLP (mg/L) (2)(4)	
Site	Date	Depth ⁽¹⁾	Material	As	Cd	Pb	As	PO	Pb	As	Cd	Pb
TH-1	12/18/87	1-2 ft.		34950	16525	17325			1			
	12/18/87	2-3 ft.		43900	35000	21075	1	*****	1	-	-	
	12/18/87	3-4 ft.	1	120375	106950	21875	1	1	1	****		-
	12/18/87	4-5 ft.	****	52	0.75	8.9	-	*****			*****	-
TH-2	12/18/87	0.5-2 ft.		169	242	8935			1	*****		1
	12/18/87	2-4 ft.	-	4	3.8	221		*****	-	-	-	T
	12/18/87	6-8 ft.	-	22	3.4	170	1	1	1			T
	12/18/87	8-10 ft.		53	1.9	14	-	*****	-			T
	12/18/87	10-12 ft.		161	5.5	2	-			1	1	-
	12/18/87	15-17 ft.		164	3	28			-	1	-	-
	12/18/87	20-21 ft.		52	1.5	24	-	-	-	1	1	-
	12/18/87	25-27 ft.		21	1.5	41			-	-		1
TL-3	6/24/91	0-4 inches	Fine-grained sediments	45000	33175	158500	193	133	9.0	1	-	
	6/24/91	4-12 inches	Fine-grained sediments	43900	23225	95000	58.5	31.3	0.3	1	-	-
	6/24/91	1-2 ft.	Fine-grained sediments	36254	15725	64000	118	58.2	1.6	-	1	
	6/24/91	2-3 ft.	Fine-grained sediments	455	22	2183	0.2	<0.1	0.3	1		
	6/24/91	3-4 ft.	Alluvium	1458	=	230	9.5	<0.1	<0.1	*****	1	-
	6/24/91	4-5 ft.	Alluvium	580	14	353	9	0.1	<0.1			1
TL-4	6/24/91	0-4 inches	Fine-grained sediments	4375	2378	8875	13	91	0.5		1	1
	6/24/91	4-12 inches	Fine-grained sediments	550	270	066	3.2	9.0	<0.1	1		-
	6/24/91	1-2 ft.	Fine-grained sediments	940	458	066	1.9	0.2	<0.1	!		-
	6/24/91	2-3 ft.	Fine-grained sediments	375	127	19	4.8	0.3	<0.1	-		1
	6/24/91	3-4 ft.	Fine-grained sediments	310	105	64	4.7	0.2	40.1		-	-
	6/24/91	4'-4.5'	Alluvium	535	154	99	3.6	0.1	-00	1		1
TL-001	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	1163	135	328	2.8	0.15	<0.1	1.4	0.01	7
TL-002	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	1788	493	5250	2.0	1.9	<0.1	0.63	0.31	7
TL-003	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12" dia)	1053	235	1225	2.0	0.78	<0.1	1.6	0.05	\ -1
TL-004	12/10/91	3-4 ft.	GW - Sands, gravels and cobbles (to 12* dia)	853	23	453	2.2	0.02	<0.1	2.0	<.01	1.7
TL-005	12/10/91	+1 ft.	Slag/Sludge sample (above grade)	3055	510	14,500	0.93	1.3	0.8	1.2	<.01	7
7L-006	12/10/91	0	F. gr. sludge intermixed with slag pieces (to 6" dia.)	750	2.2	86	0.23	<.01	0.1	0.22	<.01	v
TL-007	12/10/91	1-2 ft.	F. gr. sludge intermixed with slag pieces (to 6" dia.)	513	0.91	33		<.01	9.1	0.32	<.01	7
TL-008	12/10/91	2-3 ft.	Sandy, clayey, silt vernucuille, pyrite present	1400	27	55	2.6	<.01	0,1	3.00	<.01	- -
900-TT	12/10/91	3-4 ft.	GW - Sands, grayels and cohbles (to 12" dia)	829	28	130	1.8	10.>	100	2.2	<.01	V

Notes: (1) Measured from top of natural sediment - i.e., initial pond bottom elevation.

(2) EPToxicity Limits: As=5 mg/L, Cd = 0.5 mg/L, Pb = 5 mg/L
 (3) SPLP - Synthetic Precipitation Leach Procedure

TABLE 4-1-6: SPEISS POND AND SPEISS PIT SOIL SAMPLING RESULTS FOR ARSENIC, CADMIUM & LEAD

Arsenic		-		E	P Toxicity A	s (mg/L)						Total As	(mg/Kg)	
DATE	7/25/89	7/25/89	7/25/89	7/26/89	7/26/89	7/28/89	7/28/89	7/28/89	7/28/89	4/23/87	4/23/87	12/11/87	7/24/95	7/24/95
DEPTH\SITE	SP-SS-1	SP-SS-2	SP-SS-3	SP-SS-4	SP-SS-5	SP-SS-6	SP-SS-7	SP-SS-8	SP-SS-9	DH-21	DH-21	DH-28	SPIT-01	SPIT-02
surface				****					****	****		****	****	
0-2 ft.	1.5	0.55	7.5	4.6	1	0.97	< 0.2	0.49	0.82	1.5	1750			
1-3 ft.												749		
2-4 ft.	0.21	0.71	6.4	2.4	< 0.2	0.23	0.27	0.2	1	0.91	198	983		****
4-6 ft.	< 0.2	2.7	4.9	4.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2		325	79	****	
6-8 ft.	0.24	0.56	0.39	4.5	< 0.2	< 0.2	< 0.2	0.2	3.4	0.025	36	****		
8-10 ft.	2.3	< 0.2	0.93	< 0.2	0.69	< 0.2	0.23	< 0.2	2.9					****
10-12 ft.	0.67	0.26	0.28	1.6	0.38	< 0.2	< 0.2	< 0.2	0.45	0.011	34		****	
12-14 ft.	2.3	1.1	0.51	0.57	0.29	< 0.2	0.91	< 0.2	0.23			****	4401	
14-16 ft.	3.6	0.31	0.23	1.3	0.26	< 0.2	< 0.2	< 0.2	4.9		43	204		
16-18 ft.	< 0.2	0.27	< 0.2	0.64	0.25	< 0.2	< 0.2	< 0.2	5.8					
18-20 ft.	****	0.96	< 0.2	1.7		< 0.2	0.63		2.4					****
20-21 ft.											375		723	1425
24-26 ft.		****	****				****	****			550	285		
30-31 ft.	****			****		****					250	545		
36-38 ft.					****	****						32		
			Glasser and Grant											
Cadmium				F	P Toxicity C	d (mg/L)						Total Cd	(mg/Kg)	
DEPTH\SITE	SP-SS-1	SP-SS-2	SP-SS-3	SP-SS-4	SP-SS-5	SP-SS-6	SP-SS-7	SP-SS-8	SP-SS-9	DH-21	DH-21		SPIT-01	SPIT-02
surface			****		0. 00 5									
0-2 ft.	0.21	0.1	1.1	0.09	1.6	0.07	1.5	2.5	1.3	0.88	90			
1-3 ft.				0.07	1.0	0.07				0.00		306		
2-4 ft.	< 0.05	< 0.05	0.55	0.35	2.2	0.06	1.9	2	0.22	0.16	5.5	200	****	
4-6 ft.	< 0.05	0.22	0.41	< 0.05	0.1	< 0.05	< 0.05	0.38	< 0.05	0.10	4.5	1.1		
6-8 ft.	< 0.05	0.07	< 0.05	0.06	0.08	< 0.05	< 0.05	0.1	< 0.05	0.003	6			
8-10 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.002				
10-12 ft.	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.001	< 0.5			
12-14 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.001			****	****
14-16 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	****	< 0.5	1.2		
16-18 ft.	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08		4000	1.6		
18-20 ft.		< 0.05	< 0.05	< 0.05	40.00	< 0.05	< 0.05		< 0.05					
20-21 ft.		VV.02	<0.00	<0.05	-	CO.05	<0.00		40.00		1.5		<10	W 100
1 24-26 ft.						****					1	27		4000
30-31 ft.										****	4.5	352		
36-38 ft.											1	9.8		
30-30 tt.	-											7.0		
Lead				¥	P Toxicity P	h (ma/L)				-		Total Ph	(mg/Kg)	
DEPTH\SITE	SP-SS-1	SP-SS-2	SP-SS-3	SP-SS-4	SP-SS-5	SP-SS-6	SP-SS-7	SP-SS-8	SP-SS-9	DH-21	DH-21		SPIT-01	SPIT-02
surface					02-00-5	51-55-0			D1 00 7			211-20		2111
0-2 ft.	0.15	0.74	5.4	0.3	25	0.3	18	58	7.1	29	5500			
1-3 ft.	0.15	0.74	3.4	0.5	43	0.3	10		7.1		3300	2600		
2-4 ft.	<0.1	0.19	3.1	0.79	16	0.84	17	33	2.1	1.4	170	8535		
4-6 ft.	<0.1	2.1	2.9	<0.1	0.18	<0.1	0.23	3.1	<0.1	1.4	185	8333		
6-8 ft.	<0.1	0.28	0.54	<0.1	0.18	<0.1	<0.1	0.41	<0.1	< 0.013	21			
	<0.1	0.12						0.14	<0.1	<0.015				
8-10 ft. 10-12 ft.	<0.1	<0.12	0.56	<0.1	<0.1	<0.1	<0.1	<0.14	<0.1	< 0.013	11			
10-12 ft. 12-14 ft.	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		11			****
14-16 ft.			<0.1	<0.1	0.11	<0.1	<0.1				12	20		
	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		12	20		
16-18 ft.	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1					
18-20 ft.		< 0.1	<0.1	<0.1		<0.1	<0.1		< 0.1		29	*****	010	4520
20-21 ft.	****		****						****		38	24	919	
24-26 ft.				****				*****	*****	****	14	24		
30-31 ft.				****	****		****				94	18		
36-38 ft.	1000	4444	****		****			****	****			28		

Notes: EPToxicity Limits: As=5 mg/L, Cd = 0.5 mg/L, Pb = 5 mg/L

TABLE 4-1-4: STATISTICAL SUMMARY OF LOWER LAKE SOIL CORE DATA

Interval 1 (Process Sludge)	Total Arsenic (mg/Kg)	Total Cadmium (mg/Kg)	Total Copper (mg/Kg)	Total Lead (mg/Kg)	Total Zinc (mg/Kg)
(* * ocess sauge)	(**********	(88/			
Geometric Mean	13249	2258	6352	30620	1958:
Average	16582	2994	7421	34128	2147
Median	13694	2522	6594	32800	1879
Minimum	2532	452	2131	11891	687
Maximum	40860	15524	16144	70170	4259
Standard Deviation	10178	3049	4123	15855	937
Count	21	21	21	21	2
Interval 2					
(Top of Marsh to 6 inches)					
Geometric Mean	1879	263	1143	6018	584
Average	2130	306	1378	7193	639
Median	1865	254	1091	6146	575
Minimum	665	54	240	1457	176
Maximum	6924	758	3753	18017	1124
Standard Deviation	1285	174	870	4240	266
Count	21	21	21_	21	2
Interval 3					
(6 to 12 inches)					
Geometric Mean	1040	52	675	2923	344
Average	1513	215	945	5006	418
Median	930	109	568	2191	279
Minimum	188	3	93	541	72
Maximum	10668	2077	4728	37422	1166
Standard Deviation	1812	388	961	6896	287
Count	41	41	41	41	- 4
Interval 4					
(12 to 18 inches)					
Geometric Mean	784	128	595	2416	308
Average	1882	624	1146	6485	422
Median	707	103	495	1852	290
Minimum	126	15	75	407	59
Maximum	11540	8269	5671	37380	167:
Standard Deviation	3071	1827	1625	11189	394
Count	20) 20	20	20	
Interval 5					
(18 to 36 inches)					
Geometric Mean	260	31	409	1071	20:
Average	1171	106	973	4714	29
Median	113	3 13		666	16
Minimum	77	8	91	292	9
Maximum	6917	480	4644	28069	107
Standard Deviation	2544	177	1641	10323	35
Count	1	7	7	7	

FIGURE 4-1-2. SOIL ARSENIC CONCENTRATIONS VERSUS DEPTH AT SELECTED PLANT SITE MONITORING WELL LOCATIONS

TABLE 2-1-2. RFI AND IM SURFACE SOIL SAMPLE COLLECTION AND ANALYSIS MATRIX

Project Detection Limit Goal	10 ppm 10 ppm 10 ppm 10 ppm 10 ppm	0.1 mg/L 0.1 mg/L	0.1 mg/L 0.1 mg/L 0.1 mg/L				
Laboratory Methods	XRF · XRF XRF XRF	SPLP (EPA 1312) SPLP (EPA 1312)	SPLP (EPA 1312) SPLP (EPA 1312) SPLP (EPA 1312)				
Analytical Parameters ⁽¹⁾	Z P C C A		Zh Sh				
Sample Types and Depth Intervals	Backhoe or Split Spoon 0.4" 4-12", 12-24", 24-36" (four per location)	Backhoe or Split Spoon 0-4", 4-12", 12-24", 24-36" (four per location)	Plant Site Backhoe or Split Spoon 0-4", 4-12", 12-24", 24-36" (four per location for 24 sites) (twenty locations at 5 transects) - single hole location samples:multiple hole transect samples:	Split Spoon 0-4", 4-12", 12-24", 24-36" 36-42', 42-60", 60-72", 72-84" or 3 feet below rail subgrade single hole location samples: - multiple hole transect samples	Backhoe or Split Spoon 0.4", 4-12", 12-24", 24-36" (four per location)	Backhoe or Split Spoon 0.4", 4-12", 12-24", 24-36" (four per location)	
Purpose	Collect additional data to characterize surface soils and near-surface concentration gradients (0-3') within and adjacent to the plant site						
Sample Location	Lower Ore Storage Area (LOS-SS-1 through -16)	Upper Ore Storage Area and Between Upper and Lower Lake (UOS-SS-1 through -20)	Rail Corridor Areas Plant Site (R.CSS-1 through -29) NOTE: 5 of the 29 rail corridor sample locations were sampled as transects across the corridor consisting of five samples (see PIT Work Plan)	Rail Car Staging Areas (RCSA 1 through RCSA-8) NOTE: 4 of 8 rail car staging locations were transects Two transects contained 5 sample sites and two transects contained 6 samples sites	Miscellaneous Unpaved Plant Site Areas (UPS-SS-1 through -14)	Unpaved Areas Adjacent to the Plant Sie West and South (UOS-SS-1 through -11)	(UOS-SS-12 through -18) East (UOS-SS-19 through -21)

(1) Approximately 5% of the surface soil samples were extracted using the Synthetic Precipitation Leaching Procedure (SPLP; EPA Method 1312), and the extract analyzed for As, Cd, Cu, Pb, and Zn to assess parameter leachability.

Soils
Surface
ğ
Statistics
Summary
2-3-1.
ABLE 2

Mean	432	1127	196	3439	2940		Geometric	Mean	87.6	128	2431	2492			Mean	209	416	73	1574		Geometric	Mean	229	42	969			Geometric Mean	115	49	1078	980		Geometric	73	185	41	1267			Geometric	160	429	16	390	3
Factor	56	69	816	296	83		Enrichment	ractor	1/	535	210	53		-	Enrichment Factor	13	56	303	38		Enrichment	Factor	0 7	174	60	- '4		Enrichment Factor	7	203	93	21		Enrichment	4	1-	170	109	63		Enrichment Factor	10	56	89	48	-
Background	16.5	16.3	0.24	11.6	46.9		Geo. Mean	Background	16.5	0.24	11.6	46.9			Geo. Mean Background	16.5	16.3	0.24	11.6		Geo. Mean	Background	16.5	0.24	11.6	6:04		Geo. Mean Background	16.5	16.3	11.6	46.9		Geo. Mean	16.5	16.3	0.24	11.6	6.04		Geo. Mean Background	16.5	16.3	0.24	11.6	10.0
Standard Deviation				17967			:	Standard Deviation	1518	1421	18583	11284			Standard Deviation	H			7035			Standard Deviation	906	1316	7888	2008		Standa		1051				Control Park and	Stalle			7733			Standard Deviation	# 1		122		
Location of Maximum	SS-12	RC-SA02D-1, 4/24/2001	SS-18	RC-SS17, 4/18/01	RC-SS25, 4/25/01			Location of Maximum	RC-SS05C-2, 4/6/2001	DC-55050-2, 4/6/2001	DC-5500, 4/00/01	RC-SA06, 4/24/01			Location of Maximum	UOS-SS11-3. 10/3/2001	UPS-SS01-3, 3/20/2001	RC-SS06, 4/06/01	UPS-SS01, 3/20/01 RC-SS20, 4/18/01			Location of Maximum	BC-SS06-4, 4/6/2001	RC-SS06, 4/06/01	LOS-SS06, 4/06/01	LOS-5505, 4/05/01		Location of Maximum	UOS-SS05-5, 4/17/2001	DOS-SS07-5, 4/17/2001	UOS-SS05, 4/17/01	LOS-SS10, 4/6/01			PC.SAORA-5 4/25/2001	RC-SS27-6, 4/9/2001	RC-SS27, 4/9/01	RC-SS27, 4/9/01	HC-SAU0, 4/24/U		Location of Maximum	RC-SA08B-8, 4/25/2001	RC-SA08B-8, 4/25/2001	RC-SA08B, 4/25/01	RC-SA08B, 4/25/01	אריסאעסט, אנגטיעי
Maximum				73866				Maximum	8753	19054	10992	57288			Maximum	9256	64908	10110	64307			Maximum	4455	13588	37460	26385		u		5763				:	=			26889	1		Maximum		1734		3962	
Minimum	0.01	0.01	0.05	0.01	0.05			Minimum	0.10	0.10	0.00	0.05			Minimum	0 03	0.01	0.02	0.03			Minimum	0.012	0.003	0.003	0.032		Minimum	10.00	21.00	27.00	45.00		•	MINIMUM 11 00	17.00	5.00	23.00	46.00		Minimum	16.00	44.00	5.00	176.00	138.00
Median	1028	3225	354	10875	7916			Median	503	1319	23.5	6263			Median	338	790	111	3219			Median	130	986	1193	1731		Median	165	286	1885	1000		:	Median	116	32	1593	1354		Median	181	699	8	182	360
Arithmetric	2159	5522	1225	16615	13672		Arithmetric	Mean	1133	2624	2007	9791			Arithmetric	825	1999	415	8147		Arithmetric	Mean	518	397	5153	0209		Arithmetric Mean	300	671	3547	3159		Arithmetric	Mean	715	131	5463	4987		Arithmetric Mean	408	779	68	1126	2531
Detection Frequency	173/183	175/183	167/183	177/183	179/183		Detection	Frequency	144/155	148/155	136/155	153/155			Detection	148/154	148/154	121/154	152/154		Detection	Frequency	116/128	92/128	123/128	127/128		Detection Frequency	36/39	39/39	39/39	39/39		Detection	Frequency	31/31	24/31	31/31	31/31		Detection	4/4	4/4	2/4	4/4	4/4
Parameter	ARSENIC (AS) TOT	COPPER (CU) TOT	CADMIUM (CD) TOT	LEAD (PB) TOT	ZINC (ZN) TOT	4"-12" Depth Interval		Parameter	ARSENIC (AS) TOT	COPPER (CU) TOT	CADMIUM (CD) TO	ZINC (ZN) TOT	1'-9' Denth Interval	2	Daramoter	ABSENIC (AS) TOT	COPPER (CU) TOT	CADMIUM (CD) TOT	LEAD (PB) TOT	2'-3' Deoth Interval	The state of the s	Parameter	ARSENIC (AS) TOT	COPPER (CD) 101	LEAD (PB) TOT	ZINC (ZN) TOT	3'-5' Depth Interval	Parameter	ARSENIC (AS) TOT	COPPER (CU) TOT	LEAD (PR) TOT	ZINC (ZN) TOT	5'-8' Depth Interval		Parameter	COPPER (CU) TOT	CADMIUM (CD) TOT	LEAD (PB) TOT	ZINC (ZN) TOT	8'-11' Depth Interval	Parameter	ARSENIC (AS) TOT	COPPER (CU) TOT	CADMIUM (CD) TOT	LEAD (PB) TOT	ZINC (ZN) TOT

TABLE 2-3-2. Summary Statistics for Surface Soils in the Lower Ore Storage Area

	Detection	Arithmetric		professional Control of the Control			Standard	Geo. Mean	Enrichment	
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Geometric Mear
ARSENIC (AS) TOT	28/28	1893	312	0.03	21625	SS-19		16.5	16	264
COPPER (CU) TOT	27/28	3423	805	0.07	19850	SS-19		16.3	30	488
CADMIUM (CD) TOT	23/28	440	212	0.05	2373	SS-19		0.24	339	8
LEAD (PB) TOT	27/28	8377	3003	0.01	28250	LOS-SS11, 03/15/01		11.6	119	1376
ZINC (ZN) TOT	27/28	9257	3188	0.05	46625	SS-5		46.9	29	1377

										F
ZINC (ZN) TOT	27/28	9257	3188	0.05	46625	SS-5	13183	46.9	29	1377
4"-12" Depth Interval										
	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Geometric Mean
ARSENIC (AS) TOT	24/24	542	85	0,22	2827	LOS-SS11-2, 3/15/2001	798	16.5	7	108
COPPER (CU) TOT	23/24	892	266	0.10	5812	LOS-SS05-2, 4/5/2001	1406	16.3	10	169
CADMIUM (CD) TOT	15/24	309	31	1.80	2825	LOS-SS05, 4/05/01	619	0.24	169	41
LEAD (PB) TOT	24/24	5893	920	0.69	43027	LOS-SS09, 3/15/01	10003	11.6	47	544
ZINC (ZN) TOT	24/24	6021	583	3.70	52306	LOS-SS05, 4/05/01	11424	46.9	15	718

-z Depth Interval								The same of the sa		
	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Geometric Mean
ARSENIC (AS) TOT	16/16	502	382	1	1778	£-90SS-SO1	489	16.5	15	246
COPPER (CU) TOT	16/16	876	616	8	2589	F-90S-SO7	838	16.3	25	408
CADMIIM (CD) TOT	11/16	495	103	ιΩ	4686	LOS-SS05, 4/05/01	1145	0.24	307	74
I FAD (PB) TOT	16/16	6294	3657	17	25489	LOS-SS06, 4/06/01	7080	11.6	47	544
ZINC (ZN) TOT	16/16	5233	4458	42	14504	LOS-SS06, 4/06/01	4621	46.9	45	2094

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Geometric Mean
ARSENIC (AS) TOT	5/6	462	89	0,10	2820	LOS-SS06-4	870	16.5	4	23
COPPER (CII) TOT	8/8	812	215	0.10	4614	LOS-SS05-4	1272	16.3	7	116
CADMIIM (CD) TOT	12/18	237	1 4	0.05	2636	LOS-SS05, 4/05/01	621	0.24	78	19
LEAD (DR) TOT	18/18	4860	560	0.05	37460	1.08-5806, 4/06/01	9330	11.6	25	286
ZINC (ZN) TOT	17/18	5775	1277	0.05	56395	LOS-SS05, 4/05/01	13140	46.9	=	508

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Geometric Mear
ARSENIC (AS) TOT	6/6	361	361	291	431	LOS-SS11, 4/06/01	66	16.5	21	354
COPPER (CI) TOT	0/0	725	725	612	838	LOS-SS11, 4/06/01	160	16.3	44	716
CADMIIM (CD) TOT	100	284	284	36	532	108-8811 4/06/01	351	0.24	577	138
LEAN (BB) TOT	2/2	6145	6145	4199	8091	1.08-8811, 4/06/01	2752	11.6	502	5829
ZINC (ZN) TOT	2/2	6746	6746	999	12826	LOS-SS11, 4/06/01	8238	46.9	62	2923

TOT = Total 1/2 the detection limit used for non-detected values. All analytical values are in mg/Kg

TABLE 2-3-3. Summary Statistics for Surface Soils in the Upper Ore Storage Area

	Detection						Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	requency Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	28/28	2010	1269	0.01	8091	UOS-SS03-1	2056	16.5	33	548
COPPER (CU) TOT	28/28	4161	3225	0.01	23599	UOS-SS03-1	5309	16.3	54	886
CADMILIM (CD) TOT	28/28	1949	582	0.10	14725	88-4	3730	0.24	1446	347
I FAD (PR) TOT	28/28	15084	15954	0.02	71196	UOS-8803-1	14736	11.6	325	3765
ZINC (ZN) TOT	28/28	8885	6578	60.0	44050	SS-4	10444	46.9	55	2600

4"-12" Depth Interval				The state of the s	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NA					4
	Detection						Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Frequency Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	25/25	1376	963	34	6958	UOS-SS03-2	1538	16.5	52	864
COPPER (CI) TOT	25/25	2386	1835	76	11639	UOS-SS03-2	2574	16.3	92	1503
CADMIIM (CD) TOT	25/25	280	356	-	4012	UOS-SS03, 4/27/01	917	0.24	1299	312
I EAD (PB) TOT	25/25	13675	11734	150	66080	UOS-SS03, 4/27/01	14344	11.6	. 683	7928
ZINC (ZN) TOT	25/25	6146	5283	119	16607	UOS-SS03, 4/27/01	4114	46.9	97	4550

1'-2' Depth Interval							Change	Moan	Enrichment	Geometric
	Detection						Standard	Geo. Meari		
Parameter	Frequency	Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	25/25	1556	931	2.00	9256	UOS-SS11-3	1977	16.5	42	200
COPPER (CI) TOT	25/25	2261	1993	0.02	7838	UOS-SS19-3	1879	16.3	9	981
CADMIIM (CD) TOT	24/25	367	251	0.41	1319	UOS-SS08, 4/17/01	380	0.24	678	163
LEAD (DB) TOT	25/25	13265	12839	0.14	40640	UOS-SS08, 4/17/01	10613	11.6	460	5331
ZINC (ZN) TOT	25/25	6099	6439	1.90	22911	UOS-SS4, 4/26/01	5345	46.9	71	3349
							,			
2'-3' Depth Interval									7	
	Detection						Standard	Geo. Mean	Enricoment	ceometric
Parameter	Frequency	Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	23/31	1118	760	0.01	4337	UOS-SS13-4	1235	16.5	10	161
COPPER (CI) TOT	22/31	2131	1647	0.00	6229	UOS-SS07-4	2134	16.3	17	280
CADMIM (CD) TOT	22/31	406	227	00'0	1847	UOS-SS03, 4/27/01	561	0.24	252	61
LEAD (DB) TOT	22/31	10521	6353	00.0	33343	UOS-SS13, 10/3/01	10156	11.6	112	1296
ZINC (ZN) TOT	23/31	5777	3577	0.03	16547	UOS-SS4, 4/26/01	5406	46.9	22	1021
	10.00		***************************************		The second secon					

3'-5' Depth Interval									1000000	Comparie
	Detection						Standard	Geo. Mean		2 Cachinatina
Parameter	Frequency	Frequency Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ADSENIO (AS) TOT	8/8	1005	653	15	3315	UOS-SS6-5	1083	16.5	28	468
Andersia (Ad) 101	2 6	000	1 20	2 6	5783	1108-8807-5	2062	16.3	40	656
COPPER (CU) IOI	8/8	800	707	7 2	7067	1105 5505 4/17/01	463	0.24	343	82
CADMIUM (CD) TO	8//	7.294	47	ი (1961	1100 0005 4/17/01	5640	11.6	235	2723
LEAD (PB) TOT	8/8	6611	4053	3	12928	003-3303, 4/17/01	7 100	0.7	201	0 10 1
ZINC (ZN) TOT	8/8	3227	1995	49	8542	UOS-SS12, 10/03/01	30/3	46.9	33	6001

TOT = Total 1/2 the detection limit used for non-detected values. All analytical values are in mg/Kg

TABLE 2-3-4. Summary Statistics for Surface Soils in Rail Corridor Areas

-							7	77.7	Annual alice	C. C. C. C.
	Detection	Arithmetric					Standard	Geo. Mean	Enronment	deometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	76/82	2797	1732	0.01	35500	SS-12	4262	16.5	53	867
COPPER (CU) TOT	40/41	7733	6159	0.09	35750	RC-SA02D-1	7074	16.3	165	2695
CADMIUM (CD) TOT	80/82	1722	651	0.05	23400	SS-18	3475	0.24	1819	437
LEAD (PB) TOT	79/82	26016	20121	0.05	73866	RC-SS17, 4/18/01	19968	11.6	758	8798
ZINC (ZN) TOT	81/82	20472	14762	0.05	88519	RC-SS25, 4/18/01	19234	46.9	165	7755

	Detection	Arithmetric					Standard	Geo, Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
RSENIC (AS) TOT	75/76	1648	1011	0.10	8753	RC-SS05C-2	1768	16.5	31	507
OPPER (CU) TOT	72/76	3974	2506	0.10	16054	RC-SS05C-2	3991	16.3	76	1246
ADMIUM (CD) TOT	74/76	1071	473	0.05	13992	RC-SS06, 4/6/01	1882	0.24	1342	322
LEAD (PB) TOT	75/76	18435	12293	0.05	77220	RC-SS07D, 4/9/01	19104	11.6	450	5223
ZINC (ZN) TOT	92/92	14045	12284	0.18	57288	RC-SA06 4/24/01	11960	46.9	128	6021

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	71/74	926	418	0.03	8848	RC-SA08B-3	1514	16.5	16	262
COPPER (CU) TOT	35/37	2100	1028	0.01	11818	RC-SS07E-3	2535	16.3	35	292
ADMIUM (CD) TOT	72/74	909	328	0.02	10110	RC-SS06, 4/6/01	1256	0.24	555	133
LEAD (PB) TOT	73/74	9331	5224	0.03	46314	RC-SS07C, 4/9/01	11089	11.6	204	2363
ZINC (ZN) TOT	74/74	9128	0696	0.11	35772	RC-SS20, 4/18/01	1900	46.9	74	3310

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	53/55	554	185	0.10	4455	RC-SS06-4	901	16.5	11	176
COPPER (CU) TOT	53/55	1283	691	0.10	6741	RC-SS08-4	1542	16.3	29	469
SADMIUM (CD) TOT	50/55	899	205	0.25	13588	RC-SS06, 4/6/01	1918	0.24	490	118
LEAD (PB) TOT	53/55	5499	2269	0.05	28296	RC-SS06, 4/6/01	7156	11.6	144	1675
ZINC (ZN) TOT	55/55	7907	5283	0.24	37556	RC-SS09C, 4/6/01	8435	46.9	62	2909

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	41/42	233	48	10	1525	RC-SA08B-3	349	16.5	5	85
COPPER (CU) TOT	42/42	480	153	22	2765	RC-SS1-5	635	16.3	12	191
CADMIUM (CD) TOT	27/42	214	27	ហ	3579	RC-SS06, 4/6/01	598	0.24	138	33
LEAD (PB) TOT	42/42	5529	881	27	14120	RC-SA08C, 4/25/01	3272	11.6	73	843
ZINC (ZN) TOT	42/42	2556	654	45	12772	RC-SS14C, 4/10/01	3504	46.9	17	785

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	30/30	345	51	11	2553	RC-SA08A-5	621	16.5	2	84
COPPER (CU) TOT	30/30	608	237	17	6181	RC-SS27-6	1358	16.3	14	228
CADMIUM (CD) TOT	23/30	130	33	ഗ	741	RC-SS27, 4/9/01	192	0.24	163	68
LEAD (PB) TOT	30/30	5580	1372	83	26889	RC-SS27, 4/9/01	7837	11.6	108	1248
ZINC (ZN) TOT	30/30	5116	1355	46	39575	RC-SA06, 4/24/01	8298	46.9	26	1223

	The second name of the last of	STREET, SQUARE, SQUARE	Total Control of the	The same of the last of the la		And the Party of t				
	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	4/4	59	22	17	173	RC-SA08B-9	76	16.5	2	35
COPPER (CU) TOT	4/4	180	44	36	594	RC-SA08B-9	276	16.3	5	80
CADMIUM (CD) TOT	2/4		. 00	, ro	251	RC-SA08B, 4/25/01	122	0.24	89	16
LEAD (PB) TOT	4/4	1126	182	176	3962	RC-SA08B, 4/25/01	1891	11.6	34	390
ZINC (ZN) TOT	4/4	2531	360	138	9265	RC-SA08B, 4/25/01	4492	46.9	13	618

TOT ≈ Total
1/2 the detection limit used for non-detected values.
All analytical values are in mg/Kg

TABLE 2-3-5. Summary Statistics for Surface Soils in the Unpaved On-Plant Site Area

	Detection	Arithmetric					Standard	Geomean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	19/19	2174	460	0.10	17075		3970	16.5	19	315
COPPER (CU) TOT	19/19	5119	1100	0.10	35350		9088	16.3	44	402
CADMIUM (CD) TOT	18/19	662	433	0.05	6908	UPS-SS01, 3/20/01	954	0.24	1121	569
LEAD (PB) TOT	18/19	9024	8813	0.05	39046	UPS-SS04, 3/16/01	10263	11.6	281	3256
ZINC (ZN) TOT	18/19	12039	6421	0.05	84650	SS-31	21706	46.9	71	3318

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	16/18	678	349	0.10	2148		723	16.5	10	160
COPPER (CU) TOT	18/18	1970	754	0.10	9395		2673	16.3	20	326
CADMILIM (CD) TOT	16/18	224	88	0.05	901	UPS-SS01, 3/20/01	267	0.24	263	88
LEAD (PB) TOT	17/18	7345	4625	0.05	24682		7703	11.6	114	1322
ZINC (ZN) TOT	17/18	9619	7874	0.05	41322	UPS-SS14, 3/20/01	11105	46.9	33	1548

I -z Depun merval	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Mean	Median	Minimum	Maximum	Maximum Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	14/15	610	164	0,10	3100		941	16.5	7	119
COPPER (CU) TOT	15/15	5385	506	0,10	64908		16574	16.3	17	274
CADMIIM (CD) TOT	11/15	8	88	0.05	312	UPS-SS13, 3/20/01	102	0.24	117	28
LEAD (PB) TOT	14/15	8304	896	0.05	64307	UPS-SS01, 3/20/01	17002	11.6	73	846
ZINC (ZN) TOT	14/15	4921	1647	0,05	22123	UPS-SS12, 3/16/01	8989	46.9	15	722

	Detection	Arithmetric					Standard	Geo. Mean	Enrichment	Geometric
Farameter	Frequency	Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	12/13	165	130	10	465		162	16.5	5	84
COPPER (CU) TOT	13/13	778	147	4	3522		1095	16.3	13	218
CADMIIIM (CD) TOT	8/13	, K	17	ĸ	107	UPS-SS01, 3/20/01	32	0.24	8	19
I EAD (PB) TOT	13/13	2080	630	23	9636	UPS-SS13, 3/20/01	2884	11.6	52	298
ZINC (ZN) TOT	13/13	7881	532	15	41455	UPS-SS13, 3/20/01	13187	46.9	18	852

TOT = Total 1/2 the detection limit used for non-detected values. All analytical values are in mg/Kg

TABLE 2-3-6. Summary Statistics for Surface Soils in the Unpaved Areas Adjacent to the Plant Site

	Detection			***************************************			Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	Frequency Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	25/27	161	101	0.10	746	UOP-SS02-1	181	16.5	3	55
COPPER (CU) TOT	24/27	1516	314	0.10	16375	SS-16	3553	16.3	12	200
CADMIUM (CD) TOT	19/27	78	38	0.05	532	UOP-SS10, 3/8/01	112	0.24	80	19
LEAD (PB) TOT	26/27	2177	1368	0.05	11600	SS-23	2781	11.6	42	485
ZINC (ZN) TOT	26/27	1636	946	0.05	12492	UOP-SS02, 3/29/01	2512	46.9	ω	352

	Detection		_				Standard	Geo. Mean	Enrichment	Geometric
Parameter	Frequency	requency Arithmetric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT	21/22	86	58	0.10	445	UOP-SS02-2	107	16.5	3	48
COPPER (CU) TOT	21/22	327	126	0.10	1929	UOP-SS02-2	493	16.3	∞	125
CADMIUM (CD) TOT	14/22	36	9	0.05	267	UOP-SS02, 3/29/01	22	0.24	59	41
LEAD (PB) TOT	21/22	949	539	0.05	5035	UOP-SS02, 3/29/01	1148	11.6	31	329
ZINC (ZN) TOT	21/22	1698	374	0.05	19398	UOP-SS10, 3/8/01	4312	46.9	7	317

Detection Detection	tric Mean					Standard	Geo. Mean	Furichment	Chamber
	tric Mean				_				Consider
25/25 25/25 9/25 25/25 25/25		Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
26/25 9/25 26/26 25/26	35	33	10	548	UOP-SS03-3	145	16.5	3	42
9/25 25/25 25/25	- 66	65	18	1908	UOP-SS02-3	404	16.3	5	82
25/25 25/25	92	ιΩ	ល	229	UOP-SS02, 3/29/01	48	0.24	46	=
25/25	26	153	53	5540	UOP-SS02, 3/29/01	1205	11.6	19	218
	- 66	161	28	7453	UOP-SS02, 3/29/01	1527	46.9	5	221
2'-3' Depth Interval									
Detection						Standard	Geo. Mean	Enrichment	Geometric
Parameter Frequency Arithmetric Mean	tric Mean	Median	Minimum	Maximum	Location of Maximum	Deviation	Background	Factor	Mean
ARSENIC (AS) TOT 9/11 41		16	10	388	UOP-SS15-4.1	81	16.5	1	22
11/11	12	42	16	664	UOP-SS15-4.1	171	16.3	ဇ	22
1/11	10	150	ĸ	84	UOP-SS15, 3/22/01	17	0.24	26	9
11/11	30	78	23	4088	UOP-SS15, 3/22/01	876	11.6	8	62
11/11	31	91	=	3479	UOP-SS15, 3/22/01	751	46.9	2	109

TOT = Total 1/2 the detection limit used for non-detected values. All analytical values are in mg/Kg

TABLE 2-3-7 INTER-PARAMETRIC CORRELATIONS (r) FOR SOIL METALS

Log - Tra	Soil Met	al Data			
Variable		Log Pb	Log Zn	Log As	Log Cu
Log Cd	1				
Log Pb	0.894593	1			
Log Zn	0.88421	0.936927	1		
Log As	0.658261	0.675262	0.655741	1	
Log Cu	0.634274	0.670886	0.677391	0.953843	1

Correlations are significant at p < 0.05.

In general, and r value of 0.7 or above (r²=0.5 or higher) is considered a moderately strong correlation. The r values (or r² value) closest to 1 indicate the strongest correlations.